Lecture 16, March 20, 2019

Quiz, Rotations
See also computer demo on Rotations.

QUIZ

Assuming small $\theta \ll 1$

a)

$$
\begin{aligned}
& T=2 \pi / \lambda \\
& \lambda T=2 \pi
\end{aligned}
$$

a) $\lambda=9 / l$
b

$$
\lambda=\sqrt{5 l e}
$$

c) $\lambda \lambda=1$
why" "ग"?
d) $\lambda=\sqrt{l / g}$
e) $\lambda=l / g$

$$
\lambda=2 \pi / \pi
$$

omega (w)
over loading

$$
\begin{aligned}
& w=\text { anole } \\
& w=\text { free. }
\end{aligned}
$$

Qulz contld
ODE;

$$
\ddot{\theta}=-\frac{g}{l} \sin \theta
$$

small angle approximation

$$
\begin{aligned}
& \theta \ll 1 \\
& \Rightarrow \quad \sin \theta=\theta-\left(\frac{\theta^{3}}{31}\right) \cdot \frac{\theta^{\top}}{1!} \cdots \\
& \Rightarrow \quad \ddot{\theta}=-\frac{9}{l} \theta \\
& \ddot{\theta}+\frac{g}{l} \theta=0 \\
& \text { "rx+b } x=0 \text { whatever } 0^{\prime \prime}
\end{aligned}
$$

\Rightarrow harmomic oscillator.

Rigid objects

CAll tentatlentis \& all ales marked in object are cost.
rigid object
Review no rotations (bussing can prablan)

$\vec{r}_{i}=$ pos. vector of
some pt.

$$
\operatorname{Rot}\left(\vec{r}_{i}\right)=\vec{r}_{i}^{*}=\vec{r}_{i} \text {, rateted }
$$

typical pt. $\vec{r}_{i} \xrightarrow{\text { rotation }} \vec{r}_{\text {new }}^{1} \cdot{ }_{i}^{*}$ ovis,coads 1 new cowards

$$
\vec{r}_{i}=x_{i} \hat{\imath}+4_{i} \hat{\jmath} \quad \begin{gathered}
\text { Two } \\
\text { Wo Lo rs } \\
\text { Lo Look }
\end{gathered}
$$

$$
\begin{aligned}
\overrightarrow{\text { route }} \Rightarrow \vec{r}_{i}^{*} & =x_{i}^{*} \hat{\imath}+y_{i}^{*} \hat{\jmath} \\
\text { ne } & =x_{i} \hat{\imath}^{\prime}+y_{i} \hat{\jmath}^{\prime}
\end{aligned}
$$

$$
x_{i}^{*}=? \quad y_{i}^{*}=?
$$

$$
\left\{x_{i}^{*} \hat{\imath}+y_{i}^{*} \hat{\jmath}=x_{i} \hat{\imath}^{\prime}+y_{i} \hat{\jmath}^{\prime \prime}\right\}
$$

$$
\{\xi \cdot \hat{\imath} \Rightarrow x_{i}^{*}=x_{i} \underbrace{\hat{\imath}^{\prime} \hat{\imath}}_{\cos \theta}+y_{i} \underbrace{\hat{j}^{\prime} \cdot \hat{\imath}}_{-\sin \theta}
$$

$$
\begin{aligned}
& \left\{\hat{j} \hat{\jmath} \Rightarrow y_{i}^{*}=\sin \theta x_{i}+\cos \theta y^{\prime \prime}\right. \\
& {\left[\begin{array}{l}
x_{i}^{*} \\
y_{i}^{*}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]}_{(R}\left[\begin{array}{l}
x_{i} \\
y_{i} \\
y_{\text {nep }}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\text { New } \\
\text { house } \\
\text { coords }
\end{array}\right]=[R]\left[\begin{array}{l|l|l}
x_{1} & x_{2} & \ldots \\
y_{1} & y_{2} & \ldots
\end{array}\right]} \\
& {\left[\begin{array}{l|l|l}
x_{1}^{*} & x_{2}^{*} & \\
y_{1}^{*} & y_{2}^{*} & \cdots
\end{array}\right]} \\
& \text { diffor pts,0n } \\
& \text { píture:! } \\
& 2,3, \ldots
\end{aligned}
$$

Eqri of Motion
for circular motion Physics

Polar moment of inertia
about G
accel.

$$
\begin{align*}
& \Sigma \vec{M} / c=\left\{\begin{array}{c}
\sum_{i} \vec{r}_{k / c} \times m_{i} \vec{a}_{c} \\
\int \vec{r}_{k} \times \vec{a} d m \\
\text { all dyn. }
\end{array}\right\} \text { aluays } \tag{155}\\
& \text { W } \vec{H}=\sqrt{\vec{r} \times \vec{H}^{2}} \\
& +I^{G}(\hat{\omega}) \hat{k} \\
& \alpha=\text { aniulat }
\end{align*}
$$

