## Solution for Prelim 1 Problem 1 Fall 2020 MAE 4730/5730

The force on either mass is $F_{G}=-G m M / d^{2}$, negative being toward the opposing mass. The acceleration is (see polar coordinate formula) $a=-r \omega^{2}$, where $r$ is the distance between each mass and the center of mass and $\omega$ is the (constant) angular velocity of either mass about the center of mass. We will utilize linear momentum balance which for each mass is

$$
-\frac{G m M}{d^{2}}=-m r_{\mathrm{m} / \mathrm{G}} \omega^{2}=-M r_{\mathrm{M} / \mathrm{G}} \omega^{2}
$$

These equations, combined with the constraint $r_{\mathrm{m} / \mathrm{G}}+r_{\mathrm{M} / \mathrm{G}}=d$, allows us to solve for the distances as well as the angular velocity,

$$
r_{\mathrm{m} / \mathrm{G}}=\frac{M}{m+M} d \quad r_{\mathrm{M} / \mathrm{G}}=\frac{m}{m+M} d \quad \omega=\sqrt{\frac{G(m+M)}{d^{3}}}
$$

We will consider the angular momentum about the center of mass

$$
\mathbf{H}_{/ \mathrm{G}}=\sum_{i=\mathrm{m}, \mathrm{M}} m_{i} \mathbf{r}_{i / \mathrm{G}} \times \mathbf{v}_{i / \mathrm{G}}
$$

which in our 2 D case has $\mathbf{r}_{i / \mathrm{G}} \times \mathbf{v}_{i / \mathrm{G}}=r_{i / \mathrm{G}}^{2} \omega \hat{\mathbf{k}}$, so

$$
\mathbf{H}_{/ \mathrm{G}}=\left(m r_{\mathrm{m} / \mathrm{G}}^{2}+M r_{\mathrm{M} / \mathrm{G}}^{2}\right) \omega \hat{\mathbf{k}}
$$

which, with our earlier relations for the distances, may be simplified to

$$
\mathbf{H}_{/ \mathrm{G}}=\left(\frac{m M}{m+M} \omega d^{2}\right) \hat{\mathbf{k}}=\left(m M \sqrt{\frac{G d}{m+M}}\right) \hat{\mathbf{k}}
$$

Note: two-body problems are often easier to handle using the reduced mass $m M /(m+M)$ and its corresponding one-body problem.

