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          Disclaimer
Under no circumstances does the 

author assume any responsibility and 
liability thereof,  for any injury caused to the 

reader by toxic fumes and explosions resulting 
from mixing incompatible matrices and vectors. 
Array operations are known to cause irritability and 
minor itching to beginners. The author, however, 
might buy the reader a cup of coffee in the case of 
serious distress. In rare cases of very flattering 
comments or very creative suggestions about 
improving this book, the author might even buy 

the reader lunch. The reader is encouraged 
to try his/her luck by sending  comments 

to pratap@mecheng.iisc.ernet.in or
    pratap.mems@gmail.com.
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Preface

I enjoy MATLAB, and I want you to enjoy it too—that is the singular motivation

behind this book. My first and foremost goal is to get you started in MATLAB

quickly and pleasantly.

Learning MATLAB changed the meaning of scientific computing for me. I used

to think in terms of machine-specific compilers and tables of numbers as output.

Now, I expect and enjoy interactive calculation, programming, graphics, animation,

and complete portability across platforms—all under one roof. MATLAB is simple,

powerful, and for most purposes quite fast. This is not to say that MATLAB is

free of quirks and annoyances. It is not a complete miracle drug, but I like it and I

think you will probably like it too.

I first used MATLAB in 1988 in a course on matrix computation at Cornell Uni-

versity. We used the original 1984 commercial version of MATLAB. Although the

graphics capability was limited to bare-bones 2-D plots, and programming was not

possible on the mainframe VAX, I still loved it. Ever since, I have used MATLAB

for all my computational needs, for all my work, and in all the courses that I have

taught. I have given several introductory lectures, demonstrations, and hands-on

workshops. This book is a result of my involvement with MATLAB teaching, both

informal and in the classroom, over more than 25 years.

This book has been around for 20 years now. The seventh edition is in your

hand. With every new edition, I face a dilemma—the temptation to add more

material and my stubborn desire to keep it lean and thin. I have always tried to

strike a balance. This book is not meant to be a manual or an exhaustive account

of what MATLAB can do; it is meant to be a friendly introduction that can get

you going quickly. Any software package as powerful as MATLAB is likely to have

hundreds, if not thousands, of pages of documentation, both on-line and printed. In

my experience, what a beginner needs is a filtered set of instructions and discussion

that makes learning inviting, fun, and productive. Toward this goal, I have poured

my two and a half decades of experience with teaching and MATLAB computation

into the pages that follow.

This book is intended to get you started quickly. After an hour or two of

getting started, you can use the book as a reference. There are many examples,

which you can modify for your own use. The coverage of topics is based on my

experience of what is most useful, and what I wish I could have found in a book

when I was learning MATLAB. Over the years, I have received numerous feedbacks

on this book. Invariably, the chapter on tutorials (Chapter 2) has been hailed

as the greatest strength of this book. Chapter 2 is divided into two parts—the
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basics (five tutorials) and the directional explorations (six tutorials). The basics

are meant to get you going within an hour, if you are a first-time user. Then, take

a coffee break, and dive into more substantial tutorials of your choice—on arrays,

anonymous functions, exporting and importing data, navigating files and directories,

or publishing reports, and finally, if you are interested, symbolic mathematics. You

do not have to go through the later tutorials serially. You can pick and choose. You

can also come back to them later when you need to explore that particular aspect

of MATLAB computing.

A major change in this edition is the expansion of applications. Applications

used to be a single chapter in the previous editions. I have, based on the demands

from readers, expanded that chapter and split it into three chapters—Algebraic

Equations (covers linear and nonlinear equations), Data Analysis and Regression,

and Differential Equations (initial value problems and boundary value problems in

ordinary differential equations). I have tried to keep the discussion focused on how

to use MATLAB for these applications. I have chosen examples that anyone from

any discipline of science and engineering can follow without much difficulty.

The current edition has been updated for MATLAB Release 2016a. Every up-

date requires checking each command and function given in this book as examples,

and changing them if required. One peculiar problem with bringing out a new edi-

tion of a book like this (to keep up with the new version of the software package) is

to decide which aspects of software upgrade should be included. The new versions

of software packages usually add features that their experienced users ask for. As

a result, the packages and their manuals get bigger and bigger, and more intimi-

dating to a new user. I have tried hard to protect the interests of a new user in

this book. To a new or an average user, most of the distinction in new releases of

any software nowadays has to do with look and feel of the software, that is, the

user interface. Most of that has to do with rearranged windows, menus, etc., pretty

much like new models of cars–most of the changes are cosmetic, in head-lights, tail-

lights, mirrors, etc., not many changes in the engine. Our focus on MATLAB is as

a scientific computing and visualization tool. Therefore, I have chosen not to pay

much attention to user interface features. I limit the attention to those features

that a beginner cannot avoid noticing. If I could, I would like to keep the book

largely free of MATLAB screen shots (and thus the dependency on the twice-a-year

release of MATLAB versions). Almost every single command or feature discussed

in this book should work just fine with subsequent releases of MATLAB. I do not

expect any major changes in most commands and functions presented in this book

with the new releases of MATLAB over the next couple of years. However, I do

intend to keep a current list of changes on my website to safeguard your interest.

Your feedback is very important to me. If you find the book informative and

useful, it is my pleasure to be of service to you. If you find it frustrating, please

share your frustrations with me so that I can try to improve future editions.
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1. Introduction

1.1 What Is MATLAB?

MATLAB is a software package for high-performance numerical computation and

visualization. It provides an interactive environment with hundreds of built-in func-

tions for technical computation, graphics, and animation. Best of all, it also pro-

vides easy extensibility with its own high-level programming language. The name

MATLAB stands for MATrix LABoratory.

The diagram in Fig. 1.1 shows the main features and capabilities of MATLAB.

MATLAB’s built-in functions provide excellent tools for linear algebra computa-

tions, data analysis, signal processing, optimization, numerical solution of ordinary

differential equations (ODEs), quadrature, and many other types of scientific com-

putations. Most of these functions use state-of-the-art algorithms. There are nu-

merous functions for 2-D and 3-D graphics, as well as for animation. Also, for those

who cannot do without their Fortran or C codes, MATLAB even provides an ex-

ternal interface to run those programs from within MATLAB. The user, however,

is not limited to the built-in functions; he can write his own functions in the MAT-

LAB language. Once written, these functions behave just like the built-in functions.

MATLAB’s language is very easy to learn and to use.

There are also several optional “toolboxes” available from the developers of

MATLAB. These toolboxes are collections of functions written for special appli-

cations such as symbolic computation, image processing, statistics, control system

design, and neural networks. The list of toolboxes keeps growing with time. There

are now more than 50 such toolboxes. We do not attempt introduction to any

toolbox here, with the exception of the Symbolic Math Toolbox (Chapter 8).

The basic building block of MATLAB is the matrix. The fundamental data type

is the array. Vectors, scalars, real matrices, and complex matrices are all automat-

ically handled as special cases of the basic data type. What is more, you almost

never have to declare the dimensions of a matrix. MATLAB simply loves matrices



2 Introduction

Graphics Computations External Interface
     (Mex-files)

(Collections of Specialized Functions) 

MATLAB

• 2-D Graphics
• 3-D Graphics
• Color and Lighting
• Animation
• Audio and Video

• Interface with C, Java,
  and Fortran Programs

Built-in Functions

User-written Functions

• Signal Processing              • Image Processing
• Statistics                            • Splines
• Control System                 • Robust Control
• System Identification        • m-Analysis & Synthesis
• Neural Networks               • Optimization
• Communications               • Financial
• Symbolic Mathematics 

         • Linear Algebra
           • Data Analysis 
        • Signal Processing
• Polynomials & Interpolation
             • Quadrature
        • Solution of ODEs

 E 
X
T
R
A
$
F
U
N
C
T
I
O
N

 E 
X
T
R
A
$
F
U
N
C
T
I
O
N

Toolboxes

MATLAB
Programming

Language

R

And Many More

Figure 1.1: A schematic diagram of MATLAB’s main features.
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and matrix operations. The built-in functions are optimized for vector operations.

Consequently, vectorized1 commands or codes run much faster in MATLAB.

1.2 Does MATLAB Do Symbolic Calculations?

(MATLAB vs. Mathematica or Maple)

If you are new to MATLAB, you are likely to ask this question. The first thing to

realize is that MATLAB is primarily a numerical computation package, although

with the Symbolic Math Toolbox (standard with the Student Edition of MATLAB;

see Chapter 9 for an introduction) it can do symbolic algebra.2 Mathematica and

Maple are primarily symbolic algebra packages. Of course, they do numerical com-

putations too. In fact, if you know any of these packages really well, you can do

almost every calculation that MATLAB does using that software. So why learn

MATLAB? Well, MATLAB’s ease of use is its best feature. Also, it has a shal-

low learning curve (more learning with less effort) whereas the computer algebra

systems have a steep learning curve. Because MATLAB was primarily designed

to do numerical calculations and computer algebra systems were not, MATLAB is

often much faster at these calculations—often as fast as C or Fortran. There are

other packages, such as Xmath, that are also closer in aim and scope but seem to

be popular with people in some specialized application areas. The bottom line is,

in numerical computations, especially those that use vectors and matrices, MAT-

LAB beats everything hands down in terms of ease of use, availability of built-in

functions, ease of programming, and speed. The proof is in the phenomenal growth

of MATLAB users around the world in the last three decades. There are more

than 2000 universities and thousands of companies listed as registered users. MAT-

LAB’s popularity today has forced such powerful packages as Mathematica and

many others to provide extensions for files in MATLAB’s format!

1.3 Will MATLAB Run on My Computer?

The most likely answer is “yes,” because MATLAB supports almost every com-

putational platform. In addition to Windows, MATLAB is available for UNIX,

Linux, and Mac OS X operating systems. Older versions of MATLAB are available

for additional platforms such as Mac OS and Open VMS. To find out more about

product availability for your particular computer, see the MathWorks website listed

in Section 1.4.

1Vectorization refers to a manner of computation in which an operation is performed simulta-
neously on a list of numbers (a vector) rather than sequentially on each member of the list. For
example, let θ be a list of 100 numbers. Then y = sin(θ) is a vectorized statement as opposed to
y1 = sin(θ1), y2 = sin(θ2), etc.

2Symbolic algebra means that computation is done in terms of symbols or variables rather than
numbers. For example, if you type (x+y)^2 on your computer and the computer responds by
saying that the expression is equal to x2 + 2xy + y2, then your computer does symbolic algebra.
Software packages that do symbolic algebra are also known as computer algebra systems.
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1.4 Where Do I Get MATLAB?

MATLAB is a product of The MathWorks, Incorporated. Contact the company for

product information and ordering at the following address:

The MathWorks Inc.

3 Apple Hill Drive, Natick, MA 01760-2098

Phone: (508) 647-7000, Fax: (508) 647-7001

Email: info@mathworks.com

World Wide Web: http://www.mathworks.com

1.5 How Do I Use This Book?

This book is intended to serve as an introduction to MATLAB. The goal is to

get you started as simply as possible. MATLAB is a very powerful and sophisti-

cated package. It takes a while to understand its real power. Unfortunately, most

powerful packages tend to be somewhat intimidating to a beginner. That is why

this book exists—to help you overcome the fear, get started quickly, and become

productive in very little time. The most useful and easily accessible features of

MATLAB are discussed first to make you productive and build your confidence.

Several features are discussed in sufficient depth, with an invitation to explore the

more advanced features on your own. All features are discussed through examples

using the following conventions:

• Typographical styles:

– All actual MATLAB commands or instructions are shown in typed

face. Menu commands, files names, etc., are shown in sans serif font.

– Place holders for variables or names in a command are shown in italics.

So, a command shown as help topic implies that you have to type the

actual name of a topic in place of topic in the command.

– Italic text has also been used to emphasize a point and, sometimes, to

introduce a new term.

• Actual examples: Actual examples carried out in MATLAB are shown in

gray, shaded boxes. Explanatory notes have been added within small white

rectangles in the gray boxes, as shown in Fig. 1.2. These gray, boxed figures

are intended to provide a parallel track for the impatient reader. If you would

rather try out MATLAB right away, you are encouraged to go through these

boxed examples. Most of the examples are designed so that you can (more or

less) follow them without reading the entire text. All examples are system-

independent. After trying out the examples, you should read the appropriate

sections.

• On-line help: We encourage the use of on-line help. For almost all major
For on-line help

type:

help topic topics, we indicate the on-line help information in a small box in the margin,

as shown here on the left.
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>> 

>> 2 + 2

ans =

     4

>> area = pi*2.15^2

area =

   14.5220

MATLAB prompt

MATLAB response

Command

Figure 1.2: Actual examples carried out in MATLAB are shown in gray boxes
throughout this book. The text in the white boxes inside these gray boxes are
explanatory notes.

Typing help topic in MATLAB with the appropriate topic name provides

a list of functions and commands for that topic. Detailed help can then be

obtained for any of those commands and functions.

We discourage a passive reading of this book. The best way to learn any com-

puter software is to try it out. We believe this, practice it, and encourage you to

practice it too. So, if you are impatient, quickly read Sections 1.6.1–1.6.3, jump to

the tutorials on page 15, and get going.

1.6 Basics of MATLAB

Here we discuss some basic features and commands. To begin, let us look at the

general structure of the MATLAB environment.

1.6.1 MATLAB windows

On almost all systems, MATLAB works through three basic windows, which are

shown in Fig. 1.3 and discussed here.

1. MATLAB desktop: This is where MATLAB puts you when you launch it

(see Fig. 1.3). The MATLAB desktop, by default, consists of the following

subwindows.

Command window: This is the main window. It is characterized by the

MATLAB command prompt (� ). When you launch the application

program, MATLAB puts you in this window. All commands, including

those for running user-written programs, are typed in this window at the
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MATLAB prompt. In MATLAB, this window is a part of the MATLAB

window (see Fig. 1.3) that contains other smaller windows or panes. If

you can get to the command window, we advise you to ignore the other

four subwindows at this point. As software packages become more and

more powerful, their creators add more and more features to address the

needs of experienced users. Unfortunately, it makes life harder for the

beginners—there is more room for confusion, distraction, and intimida-

tion. Although we describe the other subwindows here that appear with

the command window, we do not expect it to be useful to you till you

get to Lesson 3 in Chapter 2.

Current Directory pane: This pane is located on the left of the Command
Window in the default MATLAB desktop layout. This is where all your

files from the current directory are listed. You can do file navigation

here. Make sure that this is the directory where you want to work so

that MATLAB has access to your files and where it can save your new

files. If you change the current directory (by navigating through your file

system), make sure that the selected directory is also reflected in the little

window above the Command Window marked Current Directory. This

little window and the current directory pane are interlinked; changing

the directory in one is automatically reflected in the other.

You also have several options of what you can do with a file once

you select it (with a mouse click). To see the options, click the right

button of the mouse after selecting a file. You can run M-files, rename

them, delete them, etc.

(File) Details pane: Just below the Current Directory pane is the Details
pane that shows the details of a file you select in the current directory

pane. These details are normally limited to a listing of variables from

a MAT-file (a binary data file discussed later), showing titles of M-files,

and listing headings of cells if present in M-files. You do not need to

understand these details yet.

Workspace pane: This subwindow lists all variables that you have gener-

ated so far and shows their type and size. You can do various things

with these variables, such as plotting, by clicking on a variable and then

using the right button on the mouse to select your options.

Command History pane: All commands typed on the MATLAB prompt

in the command window get recorded, even across multiple sessions (you

worked on Monday, then on Thursday, and then on next Wednesday, and

so on), in this window. You can select a command from this window with

the mouse and execute it in the command window by double-clicking on

it. You can also select a set of commands from this window and create

an M-file with a right click of the mouse (and selecting the appropriate

option from the menu).
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2. Figure window: The output of all graphics commands typed in the com-

mand window are flushed to the graphics or figure window, a separate gray

window with (default) white background color. The user can create as many

figure windows as the system memory will allow.

3. Editor window: This is where you write, edit, create, and save your own

programs in files called M-files. You can use any text editor to carry out these

tasks. On most systems, MATLAB provides its own built-in editor. However,

you can use your own editor by typing the standard file-editing command that

you normally use on your system. From within MATLAB, the command is

typed at the MATLAB prompt following the exclamation character (!). The

exclamation character prompts MATLAB to return the control temporarily

to the local operating system, which executes the command following the

character. After the editing is completed, the control is returned to MATLAB.

For example, on UNIX systems, typing !vi myprogram.m at the MATLAB

prompt (and hitting the return key at the end) invokes the vi editor on the

file myprogram.m. Typing !emacs myprogram.m invokes the emacs editor.

1.6.2 On-line help

• On-line documentation: MATLAB provides on-line help for all its built-

in functions and programming language constructs. The commands lookfor,

help, helpwin, and helpdesk provide on-line help. See Section 3.6 on page 85

for a description of the help facility.

• Demo: MATLAB has a demonstration program that shows many of its fea-

tures. The program includes a tutorial introduction that is worth trying.

Type demo at the MATLAB prompt to invoke the demonstration program,

and follow the instructions on the screen.

1.6.3 Input–output

MATLAB supports interactive computation (see Chapter 3), taking the input from

the screen and also flushing the output to the screen. In addition, it can read input

files and write output files (see Section 4.3.7). The following features hold for all

forms of input–output:

• Data type: The fundamental data type in MATLAB is an array. It encom-

passes several distinct data objects—integers, doubles (real numbers), matri-

ces, character strings, structures, cells, and tables.3 In most cases, however,

you never have to worry about the data type or the data object declarations.

For example, there is no need to declare variables as real or complex. When

a real number is entered as the value of a variable, MATLAB automatically

sets the variable to be real (double).

3MATLAB also allows users to create their own data objects and associated operations. We
do not discuss this facility in this book.
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MATLAB Desktop

Figure
Window

Editor Window 

Current Directory

Figure 1.3: The MATLAB environment consists of the MATLAB desktop, a figure
window, and an editor window. The figure and the editor windows appear only
when invoked with the appropriate commands. For example, you can open the
editor window by selecting New Script in the HOME tab (the very first thing you
see, with a ‘+’ sign) of the main window, and open a blank figure window by typing
figure on the command prompt � .
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• Dimensioning: Dimensioning is automatic in MATLAB. No dimension state-

ments are required for vectors or arrays. You can find the dimensions of an

existing matrix or a vector with the size and length (for vectors only) com-

mands.

• Case sensitivity: MATLAB is case-sensitive; that is, it differentiates be-

tween the lowercase and uppercase letters. Thus a and A are different vari-

ables. Most MATLAB commands and built-in function calls are typed in

lowercase letters. You can turn case sensitivity on and off with the casesen

command. However, we do not recommend it.

• Output display: The output of every command is displayed on the screen

unless MATLAB is directed otherwise. A semicolon at the end of a command

suppresses the screen output, except for graphics and on-line help commands.

The following facilities are provided for controlling the screen output:

– Paged output: To direct MATLAB to show one screen of output at

a time, type more on at the MATLAB prompt. Without it, MATLAB

flushes the entire output at once, without regard to the speed at which

you read.

– Output format:
For on-line help

type:

help formatThough computations inside MATLAB are performed using double pre-

cision, the appearance of floating point numbers on the screen is con-

trolled by the output format in use. There are several different screen

output formats. The following table shows the printed value of 10π in

nine different formats.

format short 31.4159

format short e 3.1416e+001

format long 31.41592653589793

format long e 3.141592653589793e+001

format short g 31.416

format long g 31.4159265358979

format hex 403f6a7a2955385e

format rat 3550/113

format bank 31.42

The additional formats, format compact and format loose, control the

spacing above and below the displayed lines, and format + displays a +,

-, and blank for positive, negative, and zero numbers, respectively. The

default is format short. The display format is set by typing format

type on the command line (see Fig. 2.1 on page 18 for an example).

• Command history: MATLAB saves previously typed commands in a buffer.

These commands can be recalled with the up-arrow key (↑). This helps in

editing previous commands. You can also recall a previous command by

typing the first few characters and then pressing the ↑ key. Alternatively, you

can double-click on a command in the Command History pane (where all your



10 Introduction

commands from even previous sessions of MATLAB are recorded and listed)

to execute it in the command window. On most UNIX systems, MATLAB’s

command-line editor also understands the standard emacs keybindings.

1.6.4 File types

MATLAB can read and write several types of files. However, there are mainly five

different types of files for storing data or programs that you are likely to use often:

M-files are standard ASCII text files, with a .m extension to the filename. There

are two types of these files: script files and function files (see Sections 4.1 and

4.2). Most programs you write in MATLAB are saved as M-files. All built-in

functions in MATLAB are M-files, most of which reside on your computer in

precompiled format. Some built-in functions are provided with source code in

readable M-files so that they can be copied and modified.

Mat-files are binary datafiles, with a .mat extension to the filename. Mat-files are

created by MATLAB when you save data with the save command. The data

is written in a special format that only MATLAB can read. Mat-files can be

loaded into MATLAB with the load command (see Section 3.7 for details).

Fig-files are binary figure files with a .�g extension that can be opened again in

MATLAB as figures. Such files are created by saving a figure in this for-

mat using the Save or Save As options from the File menu or using the

saveas command in the command window. A fig-file contains all the infor-

mation required to recreate the figure. Such files can be opened with the open

filename.fig command.

P-files are compiled M-files with a .p extension that can be executed in MATLAB

directly (without being parsed and compiled). These files are created with the

pcode command. If you develop an application that other people can use but

you do not want to give them the source code (M-file), then you give them

the corresponding p-code or the p-file.

Mex-files are MATLAB-callable Fortran, C, and Java programs, with a .mex ex-

tension to the filename. Use of these files requires some experience with MAT-

LAB and a lot of patience. We do not discuss Mex-files in this introductory

book.

1.6.5 Platform dependence

One of the best features of MATLAB is its platform independence. Once you are in

MATLAB, for the most part, it does not matter which computer you are on. Almost

all commands work the same way. The only commands that differ are the ones that

necessarily depend on the local operating system, such as editing (if you do not use

the built-in editor) and saving M-files. Programs written in the MATLAB language

work exactly the same way on all computers. The user interface (how you interact

with your computer), however, may vary a little from platform to platform.
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• Launching MATLAB: If MATLAB is installed on your machine correctly, then

you can launch it by following these directions:

On PCs: Navigate and find the MATLAB folder, locate the MATLAB pro-

gram, and double-click on the program icon to launch MATLAB. If you

have worked in MATLAB before and have an M-file or Mat-file that

was written by MATLAB, you can also double-click on the file to launch

MATLAB.

On UNIX machines: Type matlab on the UNIX prompt and hit return or

enter. If MATLAB is somewhere in your path, it will be launched. If it

is not, ask your system administrator.

• Creating a directory and saving files: Where should you save your files so

that MATLAB can easily access them? MATLAB creates a default folder

called Matlab inside Documents (on Macs), or My Documents (on PCs)

where it saves your files if you do not specify any other location. If you are

the only user of MATLAB on the computer you are working on, this is fine.

You can save all your work in this folder and access all your files easily (default

setup). If not, you have to create a separate folder for saving your work.

Theoretically, you can create a directory/folder anywhere, save your files,

and direct MATLAB to find those files. The most convenient place, however,

to save all user-written files is in the default directory MATLAB created by

the application in your Documents or My Documents folder. This way all

user-written files are automatically accessible to MATLAB. If you need to

store the files somewhere else, you might have to specify the path to the files

using the path command, or change the working directory of MATLAB to

the desired directory with a few navigational clicks in the Current Directory
pane. We recommend the latter.

• Printing:

On PCs: To print the contents of the current active window (command,

figure, or edit window), select Print... from the File menu and click

Print in the dialog box. You can also print the contents of the figure

window by typing print at the MATLAB prompt.

On UNIX machines: To print a file from inside MATLAB, type the appro-

priate UNIX command preceded by the exclamation character (!). For

example, to print the file startup.m, type !lpr startup.m on the MAT-

LAB prompt. To print a graph that is currently in the figure window

simply type print on the MATLAB prompt.
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1.6.6 General commands you should remember

On-line help

help lists topics on which help is available

helpwin opens the interactive help window with a default list

doc opens the web browser-based help facility

help topic provides help on topic

lookfor string lists help topics containing string

demo runs the demo program

Workspace information

who lists variables currently in the workspace

whos lists variables currently in the workspace with their size

what lists M-, Mat-, and Mex-files on the disk

clear clears the workspace, all variables are removed

clear x y z clears only variables x, y, and z

clear all clears all variables and functions from workspace

mlock fun locks function fun so that clear cannot remove it

munlock fun unlocks function fun so that clear can remove it

clc clears command window, cursor moves to the top

home scrolls the command window to put the curser on top

clf clears figure window

Directory information

pwd shows the current working directory

cd changes the current working directory

dir lists contents of the current directory

ls lists contents of the current directory, same as dir

path gets or sets MATLAB search path

editpath modifies MATLAB search path

copyfile copies a file

mkdir creates a directory

General information

computer tells you the computer type you are using

clock gives you wall clock time and date as a vector

date tells you the date as a string

more controls the paged output according to the screen size

ver gives the license and the MATLAB version information

bench benchmarks your computer on running MATLAB

compared to other computers

Termination

^c (Control-c) local abort, kills the current command execution

quit quits MATLAB

exit same as quit
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1.7 Visit This Again

We would like to point out a few things that vex the MATLAB beginners, perhaps,

the most. Although many of these things would probably not make sense to you

right now, they are here, and you can come back to them whenever they seem

relevant.

In the past, file navigation in MATLAB has caused considerable problems for

users, especially the beginners. We have had numerous complaints from students

about not being able to make MATLAB find their file, get MATLAB to work from

their directory, get MATLAB to find and execute the currently edited file, etc.

Fortunately, from MATLAB 6 onward, MathWorks has incorporated several new

features that mitigate this problem immensely. The current directory is shown just

above the command window with the option of changing it with just a click of the

mouse. There is also a current directory subwindow to the left of the command

window that lists files in the current directory and gives you options of opening,

loading (Mat-file), executing (M-file), editing, etc., with the click of the right button

on the mouse. You can also change the directory there or add a particular directory

to the MATLAB path so that MATLAB has access to all the files in that directory

automatically.

If you do not save all your MATLAB files in the default Work directory or folder,

you need to be aware of the following issues.

1. Not being in the right directory: You may write and save many MATLAB

programs (M-files), but MATLAB does not seem to find them. If your files

are not in the current working directory, MATLAB cannot access them. Find

which directory you are currently in by looking at the small current directory

window in the toolbar or by querying MATLAB with the command pwd. If

you are not in the right place, guide MATLAB to get to the directory where

your files are. See Lesson 10 in the tutorials (Chapter 2).

2. Not saving files in the correct directory: When you edit a file in the

MATLAB editor/debugger window and save it, it does not automatically

mean that the MATLAB command window has access to the directory you

saved your file in. So, after saving the file, when you try to execute it and

MATLAB does not find your file, follow item 1 above and set things right.

3. Not overwriting an existing file while editing: You run your program by

executing your M-file, do not like the result, edit the file, and run it again;

but MATLAB gives the same answer! The previously parsed (compiled) file

is executing; MATLAB does not know about your changes. This can happen

due to various reasons. The simple cure is, clear the workspace with clear

all and execute your file.

There are various other little things that cause trouble from time to time. We

point them out throughout the book wherever they raise issues.





2. Tutorial
Lessons

The following lessons are designed to get you started quickly in MATLAB. Each

lesson should take about 10–15 minutes. The lessons are intended to make you

familiar with the basic facilities of MATLAB. We also urge you to do the exercises

given at the end of each lesson. This will take more time, but it will make you

familiar with MATLAB. If you get stuck in the exercises, simply turn the page;

answers are on the back. Most answers consist of correct commands to do the

exercises. However, there are several correct ways to do the problems. So, your

commands may look different from those given.

Before You Start

You need some information about the computer you are going to work on. In

particular, find out the following:

• How to log on and log off, if it is not your personal computer.

• Where MATLAB is installed on the computer.

• How to access MATLAB.

• Where you can write and save files—hard drive or external storage.

• If there is a printer attached to the computer.

If you are working on your own computer, you will most likely know the answer

to these questions. If you are working on a computer in a public facility, the system

manager can help you. If you are in a class that requires working on MATLAB,

your professor or TA can provide answers. In public facilities, sometimes the best

thing to do is to spot a friendly person who works there and ask these questions

politely. People are usually nice!

If you have not read the introduction (Chapter 1), we recommend that you at

least read Sections 1.6.1–1.6.3 and glance through the rest of Section 1.6 before

trying the tutorials.
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The Basics

Here are the lessons in a nutshell:

Lesson 1: Launch MATLAB, do some simple calculations, and quit.

Key features: Learn to add, multiply, and exponentiate numbers; use trigono-

metric functions; and control screen output with format.

Lesson 2: Create and work with arrays, vectors in particular.

Key features: Learn to create, add, and multiply vectors; use sin and sqrt

functions with vector arguments; and use linspace to create a vector.

Lesson 3: Plot simple graphs.

Key features: Learn to plot, label, and print out a circle.

Lesson 4: Write and execute a script file.

Key features: Learn to write, save, and execute a script file that plots a unit

circle.

Lesson 5: Write and execute a function file.

Key features: Learn to write, save, and execute a function file that plots a

circle of any specified radius.
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2.1 Lesson 1: A Minimum MATLAB Session

Goal: To learn how to start a MATLAB session, do a few trivial calculations,

quit MATLAB, and sign off.

Time Estimates

Lesson: 10 minutes

Exercises: 30 minutes

What you are going to learn

• How to do simple arithmetic calculations. The arithmetic operators are

+ addition,

− subtraction,

∗ multiplication,

/ division, and

ˆ exponentiation.

• How to assign values to variables.

• How to suppress screen output.

• How to control the appearance of floating point numbers on the screen.

• How to quit MATLAB.

The MATLAB commands/operators used are

+, -, *, /, ^, ;

sin, cos, log

format

quit

In addition, if you do the exercises, you will learn more about arithmetic oper-

ations, exponentiation and logarithms, trigonometric functions, and complex num-

bers.

Method: Log on and launch MATLAB. Once the MATLAB command window

is on the screen, you are ready to carry out the first lesson. Some commands and

their output are shown in Fig. 2.1. Go ahead and reproduce the results.
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Enter 2+2  and hit the return/enter 
key. Note that the result of an un-
assigned expression is saved in the  
default variable ans .

You can also assign the value of an 
expression to a variable.

A semicolon at the end suppresses
screen output. MATLAB  remembers
y, though. You can recall the value of
y  by simply typing y.  

MATLAB  knows trigonometry. 
Here is cos-1 of -1. The answer is in
radians (for degrees, use acosd).

The floating point output display
is controlled by the format 
command. Here are two examples.
More information will be provided
on this later.

Quit MATLAB. You can also quit by 
selecting Quit from the file menu on 
Macs and PCs.  

>> 2 + 2

ans =

     4

>> x = 2 + 2

x =

     4

>> y = 2^2 + log(pi)*sin(x);

>> y

y =

    3.1337

>> theta = acos(-1)

theta =

    3.1416

>> format short e
>> theta

theta =

   3.1416e+000

>> format long
>> theta

theta =

   3.141592653589793

>> quit

Figure 2.1: Lesson 1: Some simple calculations in MATLAB.
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EXERCISES

1. Arithmetic operations: Compute the following quantities:

• 25

25−1 and compare with (1− 1
25 )−1.

• 3
√

5−1
(
√

5+1)2
− 1. The square root

√
x can be calculated with the command

sqrt(x) or x^0.5.

• Area = πr2 with r = π
1
3 − 1. (π is pi in MATLAB.)

2. Exponential and logarithms: The mathematical quantities ex, lnx, and

log x are calculated with exp(x), log(x), and log10(x), respectively. Cal-

culate the following quantities:

• e3, ln(e3), log10(e3), and log10(105).

• eπ
√

163.

• Solve 3x = 17 for x and check the result. (The solution is x = ln 17
ln 3 . You

can verify the result by direct substitution.)

3. Trigonometry: The basic MATLAB trigonometric functions are sin, cos,

tan, cot, sec, and csc. The inverses, e.g., arcsin, arctan, etc., are cal-

culated with asin, atan, etc. The same is true for hyperbolic functions.

The inverse function atan2 takes two arguments, y and x, and gives the four-

quadrant inverse tangent. The argument of these functions must be in radians.

Calculate the following quantities:

• sin π
6 , cosπ, and tan π

2 .

• sin2 π
6 + cos2 π

6 . (Typing sin^2(x) for sin2 x will produce an error.)

• y = cosh2 x− sinh2 x, with x = 32π.

Use sind, cosd, tand, etc., with arguments in degrees to compute the same

quantities as above.

4. Complex numbers: MATLAB recognizes the letters i and j as the imaginary

number
√
−1. A complex number 2 + 5i may be input as 2+5i or 2+5*i

in MATLAB. The former case is always interpreted as a complex number,

whereas the latter case is taken as complex only if i has not been assigned

any local value. The same is true for j. This kind of context dependence, for

better or worse, pervades MATLAB. Compute the following quantities:

• 1+3i
1−3i . Can you check the result by hand calculation?

• eiπ4 . Check the Euler’s Formula eix = cosx + i sinx by computing the

right-hand side too, i.e., compute cos(π/4) + i sin(π/4).

• Execute the commands exp(pi/2*i) and exp(pi/2i). Can you explain

the difference between the two results?
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Answers to Exercises

1. Command Result

2^5/(2^5-1) 1.0323

3*(sqrt(5)-1)/(sqrt(5)+1)^2 - 1 −0.6459

area=pi*(pi^(1/3)-1)^2 0.6781

2. Command Result

exp(3) 20.0855

log(exp(3)) 3

log10(exp(3)) 1.3029

log10(10^5) 5

exp(pi*sqrt(163)) 2.6254e+17

x=log(17)/log(3) 2.5789

3. Command Result

sin(pi/6) 0.5000

cos(pi) −1

tan(pi/2) 1.6331e+16

(sin(pi/6))^2+(cos(pi/6))^2 1

x=32*pi; y=(cosh(x))^2-(sinh(x))^2 0

sind(30) 0.5000

cosd(180), tand(90), etc. obvious answers

4. Command Result

(1+3i)/(1-3i) −0.8000 + 0.6000i

exp(i*pi/4) 0.7071 + 0.7071i

exp(pi/2*i) 0.0000 + 1.0000i

exp(pi/2i) 0.0000 − 1.0000i

Note that

exp(pi/2*i) = e
π
2 i = cos(π2 ) + i sin(π2 ) = i

exp(pi/2i) = e
π
2i = e−

π
2 i = cos(π2 )− i sin(π2 ) = −i
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2.2 Lesson 2: Creating and Working with Arrays
of Numbers

Goal: To learn how to create arrays and vectors and how to perform arithmetic

and trigonometric operations on them.

An array is a list of numbers or expressions arranged in horizontal rows and vertical

columns. When an array has only one row or column, it is called a vector. An array

with m rows and n columns is called a matrix of size m × n. See Section 3.1 for more

information.

Time Estimates

Lesson: 15 minutes

Exercises: 45 minutes

What you are going to learn

• How to create row and column vectors.

• How to create a vector of n numbers linearly (equally) spaced between two

given numbers a and b.

• How to do simple arithmetic operations on vectors.

• How to do array operations:

.* term-by-term multiplication,

./ term-by-term division, and

.^ term-by-term exponentiation.

• How to use trigonometric functions with array arguments.

• How to use elementary math functions such as square root, exponentials, and

logarithms with array arguments.

This lesson deals primarily with 1-D arrays, i.e., vectors. One of the exercises

introduces you to 2-D arrays, i.e., matrices. There are many mathematical concepts

associated with vectors and matrices that we do not mention here. If you have some

background in linear algebra, you will find that MATLAB is set up to do almost

any matrix computation (e.g., inverse, determinant, rank).

Method: You already know how to launch MATLAB. Go ahead and try the

commands shown in Fig. 2.2. Once again, you are going to reproduce the results

shown.
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>> x = [1 2 3]

x =
     1     2     3

>> y = [2; 1; 5]

y =
     2
     1
     5

>> z = [2 1 0];
>> a = x + z

a =
     3     3     3

>> b = x + y

??? Error using ==> plus
Matrix dimensions must agree.

>> a = x.*z

a =
     2     2     0

>> b = 2*a

b =
     4     4     0

>> x = linspace(0,10,5)

x =
         0    2.5000    5.0000    7.5000   10.0000

>> y = sin(x);

>> z = sqrt(x).*y

z =
         0    0.9463   -2.1442    2.5688   -1.7203

You can multiply (or divide) the 
elements of two same-sized vectors  
term by term with the array operator
.*  (or ./).

But you cannot add (or subtract) a   
row vector to a column vector.

x is a row vector with three elements. 

y is a column vector with  three 
elements.

You can add (or subtract) two 
vectors of the same size.

  But multiplying a vector with a
  scalar does not need any special
  operation (no dot before the *).

Create a vector x  with 5 elements
linearly spaced between 0 and 10.

Trigonometric functions sin, cos,
etc., as well as elementary math
functions sqrt, exp, log, etc.,
operate on vectors term by term.

Figure 2.2: Lesson 2: Some simple calculations with vectors.
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EXERCISES

1. Equation of a straight line: The equation of a straight line is y = mx+ c,

where m and c are constants. Compute the y-coordinates of a line with slope

m = 0.5 and the intercept c = −2 at the following x-coordinates:

x = 0, 1.5, 3, 4, 5, 7, 9, and 10.

[Note: Your command should not involve any array operators because your

calculation involves multiplication of a vector with a scalar m and then addi-

tion of another scalar c.]

2. Multiply, divide, and exponentiate vectors: Create a vector t with 10

elements: 1, 2, 3, . . ., 10. Now compute the following quantities:

• x = t sin(t).

• y = t−1
t+1 .

• z = sin(t2)
t2 .

3. Points on a circle: All points with coordinates x = r cos θ and y = r sin θ,

where r is a constant, lie on a circle with radius r, i.e., they satisfy the equation

x2 + y2 = r2. Create a column vector for θ with the values 0, π/4, π/2, 3π/4,

π, and 5π/4. Take r = 2 and compute the column vectors x and y. Now

check that x and y indeed satisfy the equation of a circle, by computing the

radius r =
√

(x2 + y2). [To calculate r you will need the array operator .^

for squaring x and y. Of course, you could compute x2 by x.*x also.]

4. The geometric series: This is funky! You know how to compute xn element

by element for a vector x and a scalar exponent n. How about computing

nx, and what does it mean? The result, again, is a vector with elements

nx1 , nx2 , nx3 , etc. The sum of a geometric series 1 + r + r2 + r3 + · · · + rn

approaches the limit 1
1−r for r < 1 as n → ∞. Create a vector n of

11 elements from 0 to 10. Take r = 0.5 and create another vector x =

[r0 r1 r2 · · · rn] with the x=r.^n command. Now take the sum of this

vector with the command s=sum(x) (s is the sum of the actual series). Cal-

culate the limit 1
1−r and compare the computed sum s. Repeat the procedure

taking n from 0 to 50 and then from 0 to 100.

5. Matrices and vectors: Go to Fig. 3.1 on page 67 and reproduce the results.

Now create a vector and a matrix with the following commands: v=0:0.2:12;

and M=[sin(v); cos(v)]; (see Section 3.1.5 on page 72 for use of “:” in

creating vectors). Find the sizes of v and M using the size command. Extract

the first 10 elements of each row of the matrix and display them as column

vectors.
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Answers to Exercises

Commands to solve each problem are given here.

1. x=[0 1.5 3 4 5 7 9 10];

y=0.5*x-2

[Ans. y = −2.0000 −1.2500 −0.5000 0 0.5000 1.5000 2.5000 3.0000]

2. t=1:10;

x=t.*sin(t)

y=(t-1)./(t+1)

z=sin(t.^2)./(t.^2)

3. theta=[0;pi/4;pi/2;3*pi/4;pi;5*pi/4]

r=2;

x=r*cos(theta);

y=r*sin(theta);

x.^2+y.^2

4. n=0:10;

r=0.5;

x=r.^n;

s1=sum(x)

n=0:50;

x=r.^n;

s2=sum(x)

n=0:100;

x=r.^n;

s3=sum(x)

[Ans. s1 = 1.9990, s2 = 2.0000, and s3 = 2]

5. v=0:0.2:12;

M=[sin(v); cos(v)];

size(v)

size(M)

M(:,1:10)’

[Ans. v is 1 × 61 and M is 2 × 61. The M(:,1:10)’ command picks out the

first 10 elements from each row of M and transposes them to give a 10 × 2

matrix.]
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2.3 Lesson 3: Creating and Printing Simple Plots

Goal: To learn how to make a simple 2-D plot in MATLAB and print it out.

Time Estimates

Lesson: 10 minutes

Exercises: 40 minutes

What you are going to learn

• How to generate x- and y-coordinates of 100 equidistant points on a unit

circle.

• How to plot x vs. y and thus create the circle.

• How to set the scale of the x-axis and the y-axis to be the same, so that the

circle looks like a circle and not an ellipse.

• How to label the axes with text strings.

• How to title the graph with a text string.

• How to get a hard copy of the graph.

The MATLAB commands used are

plot creates a 2-D line plot,

axis changes the aspect ratio of the x-axis and the y-axis,

xlabel annotates the x-axis,

ylabel annotates the y-axis,

title puts a title on the plot, and

print prints a hard copy of the plot.

This lesson teaches you the most basic graphics commands. The exercises take

you through various types of plots, overlay plots, and more involved graphics.

Method: You are going to draw a circle of unit radius. To do this, first generate

the data (x- and y-coordinates of, say, 100 points on the circle), then plot the data,

and finally print the graph. For generating data, use the parametric equation of a

unit circle:

x = cos θ, y = sin θ, 0 ≤ θ ≤ 2π.

In the sample session shown in Fig. 2.3, only the commands are listed. You

should see the output on your screen.
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>> theta = linspace(0,2*pi,100);

>> x = cos(theta);

>> y = sin(theta);

>> plot(x,y)

>> axis('equal');

>> xlabel('x')

>> ylabel('y')

>> title('Circle of unit radius')

>> print

Create a linearly spaced 100-
elements-long vector θ.

Calculate x- and y-coordinates.

Plot x vs. y  (see Section 6.1).

Set the length scales of the two
axes to be the same.

Label the x-axis with x.

Label the y-axis with y .

Put a title on the plot.

Print on the default printer.

Figure 2.3: Lesson 3: Plotting and printing a simple graph.

Comments:
• After you enter the command plot(x,y), you should see an ellipse in the

figure window. MATLAB draws an ellipse rather than a circle because of its

default rectangular axes. The command axis(’equal’) directs MATLAB to

use the same scale on both axes, so that a circle appears as a circle. You can

also use axis(’square’) to override the default rectangular axes.

• The arguments of the axis, xlabel, ylabel, and title commands are text

strings. Text strings are entered within single right-quote (′) characters. For

more information on text strings, see Section 3.3 on page 77.

• The print command sends the current plot to the printer connected to your

computer.
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EXERCISES

1. A simple sine plot: Plot y = sinx, 0 ≤ x ≤ 2π, taking 100 linearly

spaced points in the given interval. Label the axes and put “Plot created by

yourname” in the title.

2. Line styles: Make the same plot as in Exercise 1, but rather than displaying

the graph as a curve, show the unconnected data points. To display the

data points with small circles, use plot(x,y,’o’). [Hint: You may look into

Section 5.1 on page 141 if you wish.] Now combine the two plots with the

command plot(x,y,x,y,’o’) to show the line through the data points as

well as the distinct data points.

3. An exponentially decaying sine plot: Plot y = e−0.4x sinx, 0 ≤ x ≤ 4π,

taking 10, 50, and 100 points in the interval. [Be careful about computing

y. You need array multiplication between exp(-0.4*x) and sin(x). See

Section 3.2.1 on page 73 for more discussion on array operations.]

4. Space curve: Use the command plot3(x,y,z) to plot the circular helix

x(t) = sin t, y(t) = cos t, z(t) = t, 0 ≤ t ≤ 20.

5. On-line help: Type help plot on the MATLAB prompt and hit return. If

too much text flashes by the screen, type more on, hit return, and then type

help plot again. This should give you paged screen output. Read through

the on-line help. To move to the next page of the screen output, simply press

the spacebar.

6. Log-scale plots: The plot commands semilogx, semilogy, and loglog plot

the x-values, the y-values, and both x- and y-values on a log10 scale, respec-

tively. Create a vector x=0:10:1000. Plot x vs. x3 using the three log-scale

plot commands. [Hint: First, compute y=x.^3 and then use semilogx(x,y),

etc.]

7. Overlay plots: Plot y = cosx and z = 1− x2

2 + x4

24 for 0 ≤ x ≤ π on the same

plot. You might like to read Section 5.1.5 on page 144 to learn how to plot

multiple curves on the same graph. [Hint: You can use plot(x,y,x,z,’--’)

or you can plot the first curve, use the hold on command, and then plot the

second curve on top of the first one.]

8. Fancy plots: Go to Section 5.1.7 and look at the examples of specialized 2-D

plots given there. Reproduce any of the plots you like.

9. A very difficult plot: Use your knowledge of splines and interpolation to

draw a lizard (just kidding).
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Answers to Exercises

Commands required to solve the problems are shown here.

1. x=linspace(0,2*pi,100);

plot(x,sin(x))

xlabel(’x’), ylabel(’sin(x)’)

title(’Plot created by Rudra Pratap’)

2. plot(x,sin(x),x,sin(x),’o’)

xlabel(’x’), ylabel(’sin(x)’)

3. x=linspace(0,4*pi,10); % with 10 points

y=exp(-.4*x).*sin(x);

plot(x,y)

x=linspace(0,4*pi,50); % with 50 points

y=exp(-.4*x).*sin(x);

plot(x,y)

x=linspace(0,4*pi,100); % with 100 points

y=exp(-.4*x).*sin(x);

plot(x,y)

4. t=linspace(0,20,100);

plot3(sin(t),cos(t),t)

5. You should not be looking for an answer here.

6. x=0:10:1000;

y=x.^3;

semilogx(x,y)

semilogy(x,y)

loglog(x,y)

7. x=linspace(0,pi,100);

y=cos(x); z=1-x.^2/2+x.^4/24;

plot(x,y,x,z)

plot(x,y,x,z,’--’)

legend(’cos(x)’,’z’) % try this legend command

[For fun: If the last command legend does produce a legend on your plot, click and
hold your mouse on the legend and see if you can move it to a location of your liking.
See page 143 for more information on legend.]
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2.4 Lesson 4: Creating, Saving, and Executing a
Script File

Goal: To learn how to create script files and execute them in MATLAB.

A script file is a user-created file with a sequence of MATLAB commands in it. The

file must be saved with a .m extension to its name, thereby, making it an M-file. A script

file is executed by typing its name (without the .m extension) at the command prompt.

For more information, see Section 4.1 on page 101.

Time Estimates

Lesson: 20 minutes

Exercises: 30 minutes

What you are going to learn

• How to create, write, and save a script file.

• How to execute the script file in MATLAB.

Unfortunately, creating, editing, and saving files are somewhat system-dependent

tasks. The commands needed to accomplish these tasks depend on the operating

system and the text editor you use. It is not possible to provide an introduction to

these topics here. So, we assume that

• You know how to use a text editor on your UNIX system (for example, vi or

emacs), or that you’re using the built-in MATLAB editor on a Mac or a PC.

• You know how to open, edit, and save a file.

• You know which directory your file is saved in.

Method: Write a script file to draw the unit circle of Lesson 3. You are essentially

going to write the commands shown in Fig. 2.3 in a file, save it, name it, and execute

it in MATLAB. Follow the directions below.

1. Create a new file: Editor window

• On PCs and Macs: In the HOME tab of the main MATLAB window,

click on New Script (alternatively, click on New (big + sign) and from

the drop down menu, select Script). A new Editor window should appear

with an “untitled” tab open for you to write things in.

• On UNIX workstations: Type !vi circle.m or !emacs circle.m

at the MATLAB prompt to open an edit window in vi or emacs.

2. Type the following lines into this file. Lines starting with a % sign are inter-

preted as comment lines by MATLAB and are ignored.
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% CIRCLE - A script file to draw a unit circle

% File written by Rudra Pratap.

% ----------------------------

theta=linspace(0,2*pi,100); % create vector theta

x=cos(theta); % generate x-coordinates

y=sin(theta); % generate y-coordinates

plot(x,y); % plot the circle

axis(’equal’); % set equal scale on axes

title(’Circle of unit radius’) % put a title

3. Write and save the file under the name circle.m:

• On PCs: Select Save As... from the options under Save in the EDITOR
tab. A dialog box should appear. Type circle.m as the name of the

document. Make sure the file is being saved in the folder you want it to

be in (the current working folder/directory of MATLAB). Click Save to

save the file.

• On UNIX workstations: You can use your favorite editor to write

and save the file. After writing the file, quit the editor to get back to

MATLAB.

4. Now get back to MATLAB and type the commands shown in Fig. 2.4 in the

command window to execute the script file.

>> help circle

CIRCLE - A script file to draw a unit circle
File written by Rudra Pratap. 
-----------------------------

>> circle

Seek help on the script file to see  
if MATLAB can access it. 

MATLAB  lists the comment lines 
of the file as on-line help.

Execute the file. You should see  
the circle plot in the figure window. 

Figure 2.4: Executing a script file.

5. If you have the script file open in the MATLAB Editor window, you can also

execute the file by pressing the Run icon (the little green arrowhead in the

RUN section of the EDITOR tab).
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EXERCISES

1. Show the center of the circle: Modify the script file circle.m to show the

center of the circle on the plot, too. Show the center point with a “+”. (Hint:

See Exercises 2 and 7 of Lesson 3.)

2. Change the radius of the circle: Modify the script file circle.m to draw a

circle of arbitrary radius r as follows:

• Include the following command in the script file before the first exe-

cutable line (theta=...) to ask the user to input (r) on the screen:

r = input(’Enter the radius of the circle: ’)

• Modify the x- and y-coordinate calculations appropriately.

• Save and execute the file. When asked, enter a value for the radius and

press return.

3. Variables in the workspace: All variables created by a script file are left in

the global workspace. You can get information about them and access them,

too:

• Type who to see the variables present in your workspace. You should see

the variables r, theta, x, and y in the list.

• Type whos to get more information about the variables and the workspace.

• Type [theta’ x’ y’] to see the values of θ, x, and y listed as three

columns. All three variables are row vectors. Typing a single right quote

(′) after their names transposes them and makes them column vectors.

4. Contents of the file: You can see the contents of an M-file without opening

the file with an editor. The contents are displayed by the type command. To

see the contents of circle.m, type type circle.m.

5. H1 line: The first commented line before any executable statement in a

script file is called the H1 line. It is this line that is searched by the lookfor

command. Because the lookfor command is used to look for M-files with

keywords in their description, you should put keywords in the H1 line of all

M-files you create. Type lookfor unit to see what MATLAB comes up with.

Does it list the script file you just created?

6. Just for fun: Write a script file that, when executed, greets you, displays

the date and time, and curses your favorite TA or professor. [The commands

you need are disp, date, clock, and possibly fix. See the on-line help on these

commands before using them.]
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Answers to Exercises

1. Replace the command plot(x,y) by the command plot(x,y,0,0,’+’).

2. Your changed script file should look like this:

% CIRCLE - A script file to draw a circle of radius ’r’

% Original circle.m file modified to incorporate variable r

% File written by Rudra Pratap on 9/14/94.

% Last modified 5/28/2009

% -----------------------------

r=input(’Enter the radius of the circle: ’)

theta=linspace(0,2*pi,100); % create vector theta

x=r*cos(theta); % generate x-coordinates

y=r*sin(theta); % generate y-coordinates

plot(x,y); % plot the circle

axis(’equal’); % set equal scale on axes

title(’Circle of given radius r’) % put a title

6. Here is a script file that you may not fully understand yet. Do not worry, just

copy it if you like it. See the on-line help on the commands used, e.g., disp,

date, fix, clock, and int2str.

% Script file to begin your day. Save it as Hi_there.m

% To execute, just type Hi_there

% File written by Rudra Pratap on 6/15/95

% Last modified 6/28/98

% -------------------------------

disp(’Hello R.P., How is life?’)

disp(’ ’) % display a blank line

disp(’Today is...’)

disp(date) % display date

time=fix(clock); % get time as integers

hourstr=int2str(time(4)); % get the hour

minstr=int2str(time(5)); % get the minute

if time(5)<10 % if minute is, say 5, then

minstr=[’0’,minstr]; %- write it as 05

end

timex=[hourstr ’:’ minstr]; % create the time string

disp(’ ’)

disp(’And the time is..’)

disp(timex) % display the time
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2.5 Lesson 5: Creating and Executing a Function
File

Goal: To learn how to write and execute a function file and to learn the difference

between a script file and a function file.

A function file is also an M-file, just like a script file, except it has a function definition

line on the top that defines the input and output explicitly. For more information, see

Section 4.2.

Time Estimates

Lesson: 15 minutes

Exercises: 60 minutes

What you are going to learn

• How to open and edit an existing M-file.

• How to define and execute a function file.

Method: Write a function file to draw a circle of a specified radius, with the

radius as the input to the function. You can either write the function file from

scratch or modify the script file of Lesson 4. We advise you to select the latter

option.

1. Open the script file circle.m:

• On PCs: In the HOME tab of the main MATLAB window, click on

New (big + sign) and from the drop down menu, select Function. A new

Editor window should appear with an “untitled” tab and some initial

text for a function file.

• On UNIX workstations: Type !vi circle.m or !emacs circle.m

on the MATLAB prompt to open the file in a vi or emacs window.

2. Type the following lines:

function [x,y] = circlefn(r);

% CIRCLEFN - Function to draw a circle of radius r.

% File written by Rudra Pratap on 9/17/94. Last modified 7/1/98

% Call syntax: [x,y] = circlefn(r); or just: circlefn(r);

% Input: r = specified radius

% Output: [x,y] = the x- and y-coordinates of data points

theta=linspace(0,2*pi,100); % create vector theta

x = r*cos(theta); % generate x-coordinates

y = r*sin(theta); % generate y-coordinates

plot(x,y); % plot the circle

axis(’equal’); % set equal scale on axes

title([’Circle of radius r =’,num2str(r)])

% put a title with the value of r

Alternatively, you could open the script file circle.m and edit it to incorporate

the required changes.
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3. Now write and save the file under the name circlefn.m as follows:

• On PCs: Select Save As... from the options under Save in the EDITOR
tab. A dialog box should appear. Type circlefn.m as the name of the

document (usually, MATLAB automatically writes the name of the func-

tion in the document name). Make sure the file is saved in the folder you

want (the current working folder/directory of MATLAB). Click Save to

save the file.

• On UNIX workstations: You are on your own to write and save the

file using the editor of your choice. After writing the file, quit the editor

to get back to MATLAB.

4. Figure 2.5 shows a sample session that executes the function circlefn in

three different ways. Try it out.

>> R = 5;

>> [x,y] = circlefn(R);

>> [cx,cy] = circlefn(2.5);

>> circlefn(1);

>> circlefn(R^2/(R+5*sin(R)));

Specify the input and execute the 
function with an explicit output list. 

You can also specify the value of 
the input directly.

If you don't need the output, you 
don't have to specify it.

Of course, the input can also be
a valid MATLAB expression.

Figure 2.5: Lesson 5: Executing a function file.

Comments:
• Note that a function file (see previous page) must begin with a function defini-

tion line. To learn more about function files, refer to Section 4.2 on page 104.

• The argument of the title command in this function file is slightly compli-

cated. It consists of two character strings. The first one is a simple character

string, ’Circle of radius r =’. The second one, num2str(r), is a func-

tion that converts the numeric value of r to a string (and hence the name

of the function). The square brackets create an array of the two strings by

concatenating them. You will learn more about this in Section 3.3 on page 77.
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EXERCISES

1. On-line help: Type help function to get on-line help on function. Read

through the help file.

2. Convert temperature: Write a function that outputs a conversion table

for Celsius and Fahrenheit temperatures. The input of the function should

be two numbers: Ti and Tf , specifying the lower and upper range of the

table in Celsius. The output should be a two-column matrix: the first column

showing the temperature in Celsius from Ti to Tf in the increments of 1oC

and the second column showing the corresponding temperatures in Fahrenheit.

To do this, (i) create a column vector C from Ti to Tf with the command

C=[Ti:Tf]’, (ii) calculate the corresponding numbers in Fahrenheit using the

formula [F = 9
5C + 32], and (iii) make the final matrix with the command

temp=[C F];. Note that your output variable will be named temp.

3. Calculate factorials: Write a function factorial to compute the factorial

n! for any integer n. The input should be the number n and the output should

be n!. You might have to use a for loop or a while loop to do the calculation.

See Section 4.3.4 on page 116 for a quick description of these loops. (You

can use the built-in function prod to calculate factorials. For example, n! is

prod(1:n). In this exercise, however, do not use this function.)

4. Compute the cross product: Write a function file crossprod to com-

pute the cross product of two vectors u and v, given u = (u1, u2, u3), v =

(v1, v2, v3), and u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1). Check your

function by taking cross products of pairs of unit vectors: (i, j), (j, k), etc.

[i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)]. (Do not use the built-in function

cross here.)

5. Sum a geometric series: Write a function to compute the sum of a geo-

metric series 1 + r+ r2 + r3 + · · ·+ rn for a given r and n. Thus the input to

the function must be r and n and the output must be the sum of the series.

[See Exercise 4 of Lesson 2.]

6. Calculate the interest on your money: The interest you get at the end

of n years, at a flat annual rate of r%, depends on how the interest is com-

pounded. If the interest is added to your account k times a year, and the

principal amount you invested is X0, then at the end of n years you would

have X = X0

(
1 + r

k

)k n
amount of money in your account. Write a function

to compute the interest (X−X0) on your account for a given X, n, r, and k.

Use the function to find the difference between the interest paid on $1000 at

the rate of 6% a year at the end of five years if the interest is compounded

(i) quarterly (k = 4) and (ii) daily (k = 365). For screen output, use format

bank (see Section 1.6.3, page 9, for a description of various formats).
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Answers to Exercises

Some of the commands in the following functions might be too advanced for you

at this point. If so, look them up or ignore them for now.

2. function temptable = ctof(tinitial,tfinal);

% CTOF : function to convert temperature from C to F

% call syntax:

% temptable = ctof(tinitial,tfinal);

% ------------

C = [tinitial:tfinal]’; % create a column vector C

F = (9/5)*C + 32; % compute corresponding F

temptable = [C F]; % make a 2 column matrix of C & F

Note: Once the function file is written and saved, you could run it to get a

temperature table showing conversion from, say 0 to 100 degrees Celsius. You

can use either ctof(0,100) or table = ctof(0,100) to get the table. Now,

here is a note of caution. What happens if you type ctof([0,100]) instead

of ctof(0,100)? You will get an error message. The two commands are very

different, although they differ just by a pair of square brackets. The function,

as written, expects two numbers in the input list, tinitial and tfinal. Therefore,

when you type ctof(0,100), the function automatically sets tinial = 0 and

tfinal = 100. The computation proceeds accordingly. However, when you

type ctof([0,100]), then the input is a single vector [0,100] that has two

elements: 0 and 100. The function, however, is not written to accept a single

vector as its input and, therefore, the function gets confused and produces an

error message. The moral of the story is, there is a difference between a list of

numbers and a vector or an array as a single object. This is something that

you will have to master as you work in MATLAB.

3. function factn = factorial(n);

% FACTORIAL: function to compute factorial n!

% call syntax:

% factn = factorial(n);

% ------------

factn = 1; % initialize. also 0! = 1

for k = n:-1:1 % go from n to 1

factn = factn*k; % multiply n by n-1, n-2, etc.

end

Can you modify this function to check for negative input and noninteger input

before it computes the factorial?
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4. function w = crossprod(u,v);

% CROSSPROD: function to compute w = u x v for vectors u & v

% call syntax:

% w = crossprod(u,v);

% ------------

if length(u)>3 | length(v)>3 % check if u OR v has > 3 elements

error(’Ask Euler. This cross product is beyond me.’)

end

w = [u(2)*v(3)-u(3)*v(2); % first element of w

u(3)*v(1)-u(1)*v(3); % second element of w

u(1)*v(2)-u(2)*v(1)]; % third element of w

Can you modify this function to check for 2-D vectors and set the third com-

ponent automatically to zero?

5. function s = gseriessum(r,n);

% GSERIESSUM: function to calculate the sum of a geometric series

% The series is 1+r+r^2+r^3+....r^n (up to nth power).

% call syntax:

% s = gseriessum(r,n);

% ------------

nvector = 0:n; % create a vector from 0 to n

series = r.^nvector; % create a vector of terms in the series

s = sum(series); % sum all elements of the vector ’series’.

6. function [capital,interest] = compound(capital,years,rate,timescomp);

% COMPOUND: function to compute the compounded capital and the interest

% call syntax:

% [capital,interest] = compound(capital,years,rate,timescomp);

% ------------

x0 = capital; n = years; r = rate; k = timescomp;

if r>1 % check for common mistake

disp(’check your interest rate. For 8% enter .08, not 8.’)

end

capital = x0*(1+r/k)^(k*n);

interest = capital - x0;

[Ans. (i) Quarterly: $346.86, Daily: $349.83, Difference: $2.97.]
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Directional Explorations

Here are the next set of lessons. These lessons are a little longer than the previous

ones and rely upon the basic skills you have already developed with the previous

lessons.

Lesson 6: Manipulate matrices and use them as matrices or arrays.

Key features: Learn how to use arrays efficiently, manipulate rows, columns,

or submatrices and distinguish between matrix and array computation.

Lesson 7: Create and work with anonymous functions.

Key features: Learn how to create functions on-the-fly (without using files)

and use them in computation efficiently.

Lesson 8: Saving, loading, importing, and exporting data.

Key features: Learn how to save computed data in a file, load the data back

into the workspace, and read different kinds of data files.

Lesson 9: Learn about file and directory navigation.

Key features: Learn several ways of checking your current directory, changing

working directory, and setting MATLAB path.

Lesson 10: Generate report from your MATLAB programs using publisher.

Key features: Learn how to generate reports in HTML format from your

MATLAB work.

Lesson 11: Work with symbolic mathematics toolbox.

Key features: Create symbolic variables, do symbolic algebra and manipula-

tion, and use symbolic math functions.

These lessons use many new commands.
We strongly recommend that whenever
you use a new command that is not ex-
plained, use on-line help to first read
about the command. Many commands
are not explained in detail because their
descriptions are readily available as on-
line help.

Another difference with respect to
the previous lessons is that answers to ex-
ercises are not provided. In most cases,
answers are not required. However, solu-
tions to these exercises are available on
the author’s website (along with addi-
tional material).
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2.6 Lesson 6: Working with Arrays and Matrices

Goal: To become familiar with 2-D arrays, indexing, matrix manipulation and

simple computations with arrays and matrices.

Time Estimates

Lesson: 20 minutes

Exercises: 30 minutes

What you are going to learn

• How to enter a matrix.

• How to access an element, a row, a column, or a submatrix of a matrix.

• How to multiply a matrix with a vector.

• How to distinguish between array operation and matrix operation.

Method: We will take a simple 3×3 matrix and use its row and column indices to

manipulate the matrix, extract a vector, compute inner and outer products of vec-

tors, multiply the matrix with a vector, exponentiate the matrix, and exponentiate

each element of the matrix using an array operation.

Comments: Arrays are the backbone of MATLAB computation. The more

familiar you are with arrays, their manipulation and usage (Figs. 2.6 and 2.7), the

better off you are in the world of MATLAB. You should look out for understanding

the following two concepts and acquiring associated computational skills.

• A 2-D array is a list of numbers arranged in rows and columns. If you form

an array by writing numbers in rows, all rows must have the same number of

entries. Same is true for columns. An array with m rows and n columns is

called an m×n array and it has a total of m·n entries. An element of the array

is recognized by its location—its row number and column number. These row

and column identifiers are called indices of the matrix. Thus A(i, j) refers to

a specific element of matrix A located in the ith row and jth column. These

locations are unique. In MATLAB, you can also use a list of numbers for the

row and column indices to access more than one element of the matrix at a

time. This concept of using indices carries over to higher-dimensional arrays

(discussed in Section 4.4) as well.

• You can use arrays for carrying out element-by-element operations (also called

array operations, see Section 3.2 for details) as well as matrix operations. If A

is a square array, then B = [A]∗ [A] or B = A2 is very different from B = [a2
ij ].

The first one is the square of matrix A or the product of the matrix A with

itself, whereas the second one is an array made of squares of corresponding

elements of array A.
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>> A=[1 2 3; 4 5 6; 7 8 8]        

A =

     1     2     3
     4     5     6
     7     8     8

>> A(2,3)                          

ans =

     6

>> A(3,3) = 9                      

A =

     1     2     3
     4     5     6
     7     8     9

>> B = A(2:3,1:3)

B =

     4     5     6
     7     8     9

>> B = A(2:3,:)                    

B =

     4     5     6
     7     8     9

>> B(:,2)=[]                      

B =

     4     6
     7     9

Matrices are entered row-wise.
Rows are separated by semicolons
and columns are separated by 
spaces or  commas.

Element Aij  of matrix A is 
accessed as A(i,j).

Correcting any entry is easy
through indexing.

Any submatrix of A  is obtained 
by using range specifiers for row 
and column indices.

 The colon by itself as a row or 
 column index specifies all rows or
 columns of the matrix.

A row or a column of a matrix is
deleted by setting it to a null 
vector [].

Figure 2.6: Lesson 6: Examples of matrix input and matrix manipulation.
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>> x = A(1,:)'

x =
     1
     2
     3

>> x'*x

ans =

    14

>> x*x'

ans =

     1     2     3
     2     4     6
     3     6     9

>> A*x

ans =

    14
    32
    50

>> A^2

ans =

    30    36    42
    66    81    96
   102   126   150

>> A.^2

ans =

     1     4     9
    16    25    36
    49    64    81

Matrices are transposed using the
single right-quote character ('). Here
x is the transpose of the first row of A.

Matrix or vector products are well-
defined between compatible pairs. A 
row vector ( x ') times a column vector 
( x) of the same length gives the inner 
product, which is a scalar, but a column
vector times a row vector of the same 
length gives the outer product, which is
a matrix.

Look how easy it is to multiply a
vector with a matrix, compared with 
Fortran or Pascal.

You can even exponentiate a matrix
if it is a square matrix. A^2 is simply
A*A.

When a dot precedes the arithmetic
operators *, ^, and /, MATLAB
performs array operation (element-by-
element operation). So, A.^2  produces
a matrix with elements ( aij)2 .

>> A = [1 2 3; 4 5 6; 7 8 9];

Figure 2.7: Lesson 6: Examples of matrix transpose, matrix multiplication, matrix
exponentiation, and array exponentiation.
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EXERCISES

1. Entering matrices: Enter the following three matrices.

A =

[
2 6
3 9

]
, B =

[
1 2
3 4

]
, C =

[
−5 5

5 3

]
.

2. Check some linear algebra rules:

• Is matrix addition commutative? Compute A+B and then B+A. Are

the results the same?

• Is matrix addition associative? Compute (A+B)+C and then A+(B+C)

in the order prescribed. Are the results the same?

• Is multiplication with a scalar distributive? Compute α(A+B) and

αA+αB, taking α = 5, and show that the results are the same.

• Is multiplication with a matrix distributive? Compute A*(B+C)

and compare with A*B+A*C.

• Matrices are different from scalars! For scalars, ab = ac implies

that b = c if a 6= 0. Is that true for matrices? Check by computing A*B

and A*C for the matrices given in Exercise 1. Also, show that A*B 6= B*A.

3. Create matrices with zeros, eye, and ones: Create the following matri-

ces with the help of the matrix generation functions zeros, eye, and ones.

See the on-line help on these functions, if required (e.g., help eye).

D =

[
0 0 0
0 0 0

]
, E =

 5 0 0
0 5 0
0 0 5

, F =

[
3 3
3 3

]
.

4. Create a big matrix with submatrices: The following matrix G is created

by putting matrices A, B, and C, given previously, on its diagonal. In how

many ways can you create this matrix using submatrices A, B, and C (that

is, you are not allowed to enter the nonzero numbers explicitly)?

G =


2 6 0 0 0 0
3 9 0 0 0 0
0 0 1 2 0 0
0 0 3 4 0 0
0 0 0 0 −5 5
0 0 0 0 5 3

.

5. Manipulate a matrix: Do the following operations on matrix G created in

Exercise 4.

• Delete the last row and last column of the matrix.

• Extract the first 4× 4 submatrix from G.

• Replace G(5,5) with 4.

• What do you get if you type G(13) and hit return? Can you explain how

MATLAB got that answer?

• What happens if you type G(12,1)=1 and hit return?
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2.7 Lesson 7: Working with Anonymous Functions

Goal: To learn how to define and use anonymous functions in command-line

computations.

An anonymous function is a function of one or more variables that you create

on the command line for subsequent evaluation (Figs 2.8 and 2.9). Such a function

is especially useful if you need to evaluate the function several times (with different

input) during a single MATLAB session and you do not care to code it in a function

file and save for later use. For example, let us say that you have f(x) = x3−32x2 +

(x− 22)x+ 100, and you need to evaluate this function at different values of x, plot

it over a certain range of x, or find the zeros of f(x). For such computations, you

can define f(x) as an anonymous function and evaluate it at any value(s) of x or

use this function as an input to other functions that need such input.

Time Estimates

Lesson: 25 minutes

Exercises: 40 minutes

What you are going to learn

• How to define an anonymous function of a single variable.

• How to evaluate an anonymous function with scalar or array arguments.

• How to define an anonymous function of several variables.

• How to use anonymous functions as input to other functions.

Method:
The key to anonymous functions is the syntax of its creation:

fn name = @(list of input variables) function expression .

Here, the key element is the symbol @ that assigns a function handle to the defined

function. A function handle is a name given to a function by which you can call

it wherever you need it. In the anonymous function definition line, fn name is

the name of the function or the handle of the function. The syntax @(list of input

variables) is what tells MATLAB that you are defining an anonymous function here.

Comments:
• Anonymous functions are defined on the command line. They live in the

MATLAB workspace and are alive as long as the MATLAB session lasts.

• You can define an anonymous function with any number of input variables.

• You must use a vectorized expression (using array operators) for the function

if you intend to use an array as an input variable.

• You can use anonymous functions as input to other functions where appro-

priate.
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>> f = @(x) x^3-3*x^2 +x*log(x-1)+100

f = 

    @(x)x^3-3*x^2+x*log(x-1)+100

>> f(0)

ans =

   100

>> f(1)

ans =

  -Inf

>> values = [f(0) f(1) f(2) f(10)]

values =

  100.0000      -Inf   96.0000  821.9722

>> x=[0 1 2 10];
>> f(x)
???? Error using ==> mpower
Matrix must be square.

Error in ==> @(x)x^3-3*x^2+x*log(x-1)+100
 
>> f = @(x) x.^3-3*x.^2 +x.*log(x-1)+100;
f(x)

ans =

  100.0000      -Inf   96.0000  821.9722

>> x = linspace(-10,10);
>> plot(x,f(x))

Warning: Imaginary parts of complex X and/or Y 
arguments ignored

  

Create a function 

Evaluate the function at x = 0, i.e.,
find f(0). 

Evaluate the function at x = 1. Note
that f is singular at x = 1.  

You can use f in an array also.  

You can also use f as input to other
functions where appropriate.  

Using an array as the input to f causes 
an error. This is because the expression 
for f is not vectorized.  

Redefine f by vectorizing the 
expression (use array operators). Now 
use it with an array argument.  

Figure 2.8: Lesson 7: Creating and evaluating anonymous functions in one variable.
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>> f = @(mu,x) mu*x - x.^3;

>> x = linspace(-5,5)';

>> f_many = [f(-5,x) f(0,x) f(5,x) f(45,x)];

>> plot(x,f_many)

>> grid

>> xlabel('x')

>> ylabel('f(\mu,x)=\mu x - x^3')

>> g = @(a,x) a(4)*x^3 + a(3)*x^2 + a(2)*x + a(1);

>> a = [1 2 -1 0];

>> g(a,5)

ans =

   -14

>> g([1 2 -1 0],5)

ans =

   -14

>> g = @(a,x) a(4)*x.^3 + a(3)*x.^2 + a(2)*x + a(1);

>> a = [-1 2 1 -1];

>> fplot(g(a),[-2 2])

??? Input argument "x" is undefined.
Error in ==> @(a,x)a(4)*x.^3+a(3)*x.^2+a(2)*x+a(1)

 

>> g = @(x) a(4)*x.^3 + a(3)*x.^2 + a(2)*x + a(1);

>> fplot(g,[-2 2])

>> g_int = integral(g,0,1) 

g_int =

    0.0833

Define a function g(a,x) of two 
variables and use a, one of the 
variables, as an array of parameters.
Here, a = [a1 a2  a3  a4] and 
g(x) = a4x3 + a3x2 + a2x + a1. This
is useful for all polynomial type of
functions.

.

Define a function of two variables
f(μ,x) = μ x - x3 and evaluate over a
range of x for different values of μ.

Be careful about passing functions of 
two variables as an argument to 
functions that expect a function of a 
single variable in the argument.

You can first define the array a in the 
workspace and then define the function 
g with single input x. Now you can use 
it as input to functions that require 
the function to be dependent on a single 
variable. Here we compute 
with quad.
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Figure 2.9: Lesson 7: More explorations with anonymous functions.
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EXERCISES

1. Creation and evaluation of anonymous functions: Create the function:

f(x) = x2 − sin(x) + 1
x .

(a) Find f(0), f(1), and f(π/2).

(b) Vectorize f and evaluate f(x) where x = [ 0 1 π/2 π ].

(c) Create x = linspace(-1,1), evaluate f(x), and plot x vs f(x).

(d) Combine the following three commands into a single command to produce

the plot that you will get at the end of the third command.

x = linspace(-1, 1); y = f(x); plot(x,y);

(e) Use fplot to graph f(x) over x from −π to π.

2. Computation with multiple anonymous functions: Create three anony-

mous functions corresponding to the following expressions:

f(x) = x4 − 8x3 + 17x2 − 4x− 20

g(x) = x2 − 4x+ 4

h(x) = x2 − 4x− 5.

(a) Evaluate f(x)− g(x)h(x) at x = 3.

(b) Evaluate f(x)− g(x)h(x) at x = [1 2 3 4 5].

(c) Evaluate f(x)
g(x) − h(x) for any x.

(d) Plot f(x) and f(x)
g(x)h(x) over x ∈ [−5, 5].

3. Anonymous functions as the input to other functions: Use the same

function f(x) defined previously, i.e., f(x) = x4 − 8x3 + 17x2 − 4x − 20 for

the following tasks.

(a) Plot the function using fplot over an appropriate interval of x and locate

the zeros of the function on the graph (that is, find all x for which

f(x) = 0).

(b) Learn about the built-in function fzero that finds the zero of any given

function by typing help fzero. Now use fzero to find the zeros of f

accurately, making approximate initial guesses based on the plot you

made above.

(c) Use function quad to integrate f(x) from x = 0 to x = 1 and verify the

results by direct integration.

4. Anonymous functions of several variables: The formula for computing

compound interest on an investment is given by

x = x0

(
1 +

r

100

)n
,

where x = accumulated amount, x0 = initial investment, r = rate of annual

interest in percentage, and n = number of years. Define an anonymous func-

tion to compute x with (x0, r, n) as the input. Using this function, compare

the growth of a $1000 investment over a period of eight years earning an

interest of 9% with that over a period of nine years earning an interest of 8%.
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2.8 Lesson 8: Importing and Exporting Data

Goal: To learn how to read data from common data files into MATLAB workspace

and how to save data into a MATLAB readable file.

Time Estimates

Lesson: 30 minutes

Exercises: 30 minutes

What you are going to learn

• How to save data (computed variables) into a Mat-file, the MATLAB’s native

binary format.

• How to read all variables or some selected variables from data stored in a

Mat-file.

• How to write input data as text in a script file (an M-file) and run the script

file to load the data in MATLAB workspace.

• How to read mixed data—text and numbers—from an Excel spreadsheet and

how to decipher the data read automatically into a cell array.

Method: We are going to work with three different kinds of files for reading data

into MATLAB’s workspace:

• Mat-file: This is MATLAB’s native binary format file for saving data. Two

commands, save and load make it particularly easy to save data into and

load data from these files. In this lesson, we will create such a file and save

some data into it in named variables. We will then use this file to load desired

data back into the MATLAB workspace (Fig. 2.10).

• M-file: If you have a text file containing data, or you want to write a text file

containing data that you would eventually like to read in MATLAB, making

it an M-file may be an excellent option. We will use the following M-file (a

script file) in this lesson. So, you should first create this file and save it as

TempData.m before you try the session shown in Fig. 2.11.

% TempData: Script file containing data on monthly maximum temperature

Sl_No = [1:12]’;

Month = char(’January’,’February’,’March’,’April’,’May’,’June’,...

’July’,’August’,’September’,’October’,’November’,’December’);

Ave_Tmax = [22 25 30 34 36 30 29 27 24 23 21 20]’;

• Microsoft Excel file: You can import data from a Microsoft Excel spread- TempData.xls

sheet into MATLAB. You can use MATLAB’s import wizard, invoked by

typing uiimport on the command prompt, or by clicking on File → Import
Data. MATLAB also provides a special function xlsread for reading Excel’s

spreadsheets as .xls files. In this lesson, we will use xlsread (see on-line help

before using) to read mixed data from an Excel file TempData.xls. This file

contains column titles in the first row, numeric data in the first and third col-

umn, and text data in the second column. You should first create this Excel

file before trying out the commands shown in Fig. 2.11.
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>> clear all
>> theta=linspace(0,2*pi,201);
>> r = sqrt(abs(2*sin(4*theta)));
>> x = r.*cos(theta);
>> y = r.*sin(theta);
>> f = char('sqrt(abs(2*sin(4*theta)))');

>> save xydata x y f
>> whos

  Name       Size             Bytes  Class     Attributes
  f          1x27                54  char                
  r          1x201             1608  double              
  theta      1x201             1608  double              
  x          1x201             1608  double              
  y          1x201             1608  double              

>> clear all
>> whos
>> load xydata
>> whos
  Name      Size             Bytes  Class     Attributes
  f         1x27                54  char                
  x         1x201             1608  double              
  y         1x201             1608  double              

>> plot(x,y),axis('square');
>> f

f =
sqrt(abs(2*sin(4*theta)))

>> clear all
>> load xydata x y
>> whos

  Name      Size             Bytes  Class     Attributes
  x         1x201             1608  double              
  y         1x201             1608  double              

>> clear all
>> %Action in the file browser
>> size(x)

  ans =      
       1     201             

Save variables x, y and f in a binary
(Mat) datafile xydata.mat. The 
file is created by the save command. 

You can also load only selected
variables from the Mat-file. 

The newly loaded variables are f, x 
and y. Use these variables to verify 
the data they contain. 

Clear the MATLAB workspace 
(all variables are deleted).

Clear all variables, query to see no 
variables are present, load the 
datafile, and query the workspace 
again to see the loaded variables.

Delete all variables. Select xydata
in the current directory pane and
double-click x in the data browser to 
load x in the workspace. 

Figure 2.10: Lesson 8: Saving and loading data with MATLAB’s native binary data
format is the easiest and most reliable. Examples of how to save data in a Mat-file
and load all variables or selected variables from a Mat-file are shown here.
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>> clear all
>> TempData
>> whos

  Name           Size        Bytes  Class     Attributes
  Ave_Tmax      12x1            96  double              
  Month         12x9           216  char                
  Sl_No         12x1            96  double              

>> Month

Month =

January  
February 
March    
April    
...

>>[A,txt,raw] = xlsread('TempData.xls');

>> raw

raw = 

    'SN'    'Month'        'Ave. Tmax.'
    [ 1]    'January'      [        22]
    [ 2]    'February'     [        25]
    [ 3]    'March'        [        30]
    ...
    [11]    'November'     [        21]
    [12]    'December'     [        20]

>> sn = cell2mat(raw(2:13,1));

>> months = char(raw{2:13,2});

>> T = cell2mat(raw(2:13,3));

>> bar(sn,T)

Check one of the variables, Month,
to see the data it contains. All data
typed in file TempData is loaded. 

Use cell2mat to convert cell data
in raw(2:13,1)into an array sn.

Use char to convert text data in the
second column of raw into a text array.

Similarly, get the numeric data in the 
third column into array T. 

Clear the MATLAB workspace.
Execute the script file TempData
and check the new variables.

Read data from an MS Excel file
that contains a header line, text, and 
numeric data in three columns.

Note that the output raw 
that contains all the data 
is a 13 by 3 cell. You need  
to work with this cell to get 
readily usable data from it.

Now you can use the numeric arrays 
sn and T as normal data.  Here we 
use them to create a bar graph 
(output shown on the left). 

Using script files to load data typed in 
them is a very safe and sure shot 
method of getting data in the 
MATLAB workspace.
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Figure 2.11: Lesson 8: Loading data typed as text in a script file is also very easy
and reliable. You can import data from other MATLAB readable file formats as
well using File → Import Data.
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EXERCISES

1. Working with binary Mat-files: Create a matrix S with its columns cre-

ated from the terms in the sine series:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

First create a column vector x between 0 and 2π with the command

x = linspace(0,2*pi,101)’. Now compute

A = [x -x.^3/6 x.^5/120 -x.^7/factorial(7)];

• Save matrix A and vector x in a Mat-file.

• Clear all variables from the workspace.

• Select the Mat-file in the Current Directory pane and then double-click

on the variable x visible in the file contents pane below the directory

pane to load x in the workspace. This action is equivalent to typing

load Mat-file x.

• Double-click on the variable x visible in the workspace pane to open the

Variable Editor and inspect the entries of x. You can edit any value if

you wish.

• Plot sin(x) with the command plot(x,sin(x)), grid, hold on.

• Now load variable A from the Mat-file and plot A(:,1), A(:,1)+A(:,2),

A(:,1)+A(:,2)+A(3,:), and sum(A,2) on the existing graph. Adjust

the axes with the command axis([0 2*pi -2 2]. You can compare

the difference in sin(x) and its series representation with increasing terms

(up to the fourth term) on this graph.

• Save this plot as a JPEG. You can do this with the command print

-djpeg sineseriesplot.jpeg or by clicking on File → Save As... and

choosing JPEG as the file format. (We will use this image in the next

exercise.)

2. Loading image data from graphic format files: You can import image

data, written using various file formats, into MATLAB fairly easily. There

are several functions provided in MATLAB to import image, audio, and video

files. Here, we will import data from a JPEG file and reconstruct the image

from the data.

• First, learn a little more about importing data by typing help importdata.

• Now import the image data in an array S from the file sineseriesplot.jpeg
you created earlier. Check the size of S to verify that it is a 3-D matrix

(corresponding to three colors—red, green, and blue).

• Reconstruct the image with the command image(S).

• Try reading some other JPEG file that you may have (a picture perhaps),

store the data in some variable, and reconstruct the picture with the

image command. You have to play with setting the axes correctly to get

the image right.
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2.9 Lesson 9: Working with Files and Directories

Goal: To learn how to navigate through the MATLAB directory system and work

with files in a particular location.

Time Estimates

Lesson: 15 minutes

Exercises: 20 minutes

What you are going to learn

• How to find your bearings in the jungle of directories.

• How to see the contents of a directory.

• How to create a new directory and change the current directory.

• How to copy a file from one directory to another.

• How to see the list of only MATLAB-related files.

Method: MATLAB includes several menu-driven features that make file navi-

gation much easier (compared with the earlier versions). You will explore some

of these features in the exercises. In the lesson, you will learn commands that

pretty much do the same thing from the command line. The commands that you

will use are pwd, dir, ls, cd, what, makedir, etc. Please go ahead and try the

commands shown in Fig. 2.12.

Comments:
• It is important to know which directory you are currently in because any files

you write or save will, by default, be saved into the current directory.

• You may have your M-files—scripts or functions—stored in a different direc-

tory than the current directory. In that case, MATLAB will not be able to

access your files by itself. You will have to either change the current directory

to the directory where your files are or include your directory in the MATLAB

path. The path is a MATLAB variable that contains the full path names of

all directories that MATLAB can access during a work session. It is created

during MATLAB installation. You can, however, modify it. See on-line help

on path.

• You can create new directories from within the MATLAB command window.

You can also copy or move files from one directory to another with MATLAB

commands (copyfile, movefile). See on-line help on pwd, cd, mkdir,

rmdir, copyfile, movefile, what, and which.
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>> pwd

ans =

C:\matlab\work

>> dir

. .. circle.m circlefn.m

>> mkdir lesson10dir
>> ls

circle.m circlefn.m lesson10dir

>> cd lesson10dir
>> ls

>> x = 1:100;
>> y = log10(x);
>> save xydatafile x y
>> ls

xydatafile.mat

>> what

MAT-files in the current directory C:\matlab\work\le...

xydatafile

>> cd ..
>> pwd

ans =

C:\matlab\work

>> copyfile circle.m lesson10dir\
>> ls lesson10dir

circle.m xydatafile.mat

Create some data, x and y, and 
save them in a datafile named
xydatafile. List the contents of the 
directory again.

Change d irectory to lesson10dir
and list its contents.

Print (show) working d irectory.

Show the contents of the directory.

Make a new directory named
lesson10dir.  List the contents of  
the directory again.

  List MATLAB-related files.

Change directory one level up. 
Note the space between cd and ‘..’.
Check the working directory name.

Copy the file circle.m  into the
directory lesson10dir..
List the contents of lesson10dir..

Figure 2.12: Lesson 9: Working with files and directories.
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EXERCISES

1. Working with directories: Information about the current directory’s name

and its contents are available in the MATLAB desktop. Look at the command

window toolbar. There is a small window that shows the name of the current

directory, along with its path. For example, Fig. 2.13 shows that the current

directory is /Users/rudrapra/Documents/MATLAB (this is on a Mac; on a

PC it may be C:\Documents and Settings\ . . . \My Dcuments\MATLAB).

As the path indicates, it is inside the MATLAB directory.

The current directory is also displayed in a separate subwindow to the

left of the command window. If it is not visible, click on the Current Directory
tab. This subwindow also lists the contents of the current directory.

Directory
Browser

Current Directory
Subwindow

Selected
File 

Workspace
Variables 

Details of the
Selected File

Current Directory

Figure 2.13: Directory information in the MATLAB desktop. The current directory
is always displayed in the command window toolbar. In addition, the directory and
its contents are displayed in the current directory subwindow.

In this exercise, the idea is to use the GUI (graphical user interface) buttons in

the MATLAB desktop to change directories, see their contents, create direc-

tories, etc. These are the tasks that you did using commands in the tutorial

lesson (Fig. 2.12).

• Go to the current directory subwindow and change the directory using the

One Level Up or the Directory Browser button. Try several directories.

• Create a new directory using the New Directory button.

• Move or copy a file from one directory to another.

Now you know your way around the directories using mouse clicks.
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2.10 Lesson 10: Publishing Reports

Goal: To learn how to use MATLAB’s built-in publisher for publishing reports of

your MATLAB work as attractive HTML or MS Word documents (other options

such as LATEX and PowerPoint are also available).

Time Estimates

Lesson: 20 minutes

Exercises: 30 minutes

What you are going to learn

• How to create a cell script for MATLAB publisher.

• How to execute the script.

• How to publish the script and its results in an HTML file.

• How to publish the script and its results in a Word file.

• How to learn more about fancy formatting for the publisher.

Method: MATLAB includes an automatic report generator called publisher.

This publisher is accessible, like many other utilities, both from the menu and

the command line. The publisher publishes a script in several formats, including

HTML, XML, MS Word, PowerPoint, and LATEX. Here you will write a simple

script and publish it both as an HTML document and a Word document. Follow

the steps below.

1. First, open a new file in the editor and enter the following lines (including

blank lines). The only thing new here is the double percent (%%) character.

It indicates the beginning of a new cell, a unit of a set of commands (see

Exercises). The text in a line beginning with %% is used as the title of that

section (or cell) by the publisher.

%% Publishing Reports - A Simple Example

%% A Spiral Plot: written by Rudra Pratap, May 28, 2009

% Let us plot a spiral given by

% $r(\theta) = e^{-\theta/10}, 0\le \theta\le 10\pi$

%% Create vectors $\theta$ and $r$

theta = linspace(0,10*pi,200); % 200 linearly spaced points between

%- 0 and 10*pi

r = exp(-theta/10); % compute r

%% Now plot theta vs r using polar plot

polar(theta,r)

2. Save this script file as, say, spiralplot.m in the current directory.

3. Now use the following command to publish your script, including the resulting

plot, into an HTML file and open the published file.
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>>publish('spiralplot','html')

>> cd html; open spiralplot.html

Publish to HTML format.

Open the published file.

4. Voilà! You should see a nice, colorful HTML file like the one shown in Fig. 2.14.

Figure 2.14: An HTML file created by the MATLAB publisher from the script file
spiralplot.m shown on the previous page.

5. Now see the on-line help on publish and use this command to publish a Word

document (if you are on a PC).
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EXERCISES

1. Using the publisher from the editor window: Open the file spiralplot.m
that you created while working with Lesson 10. You can open the file by

following File → Open from the menu or from the command window with

either edit spiralplot.m or open spiralplot.m. Once the file is open in

the editor, select Publish from the File menu (see Fig. 2.15) of the editor

window, or click on the publish icon. The script open in the editor will be

published to an HTML file and MATLAB will automatically open the HTML

file for your perusal.

Publish icon

Publish tab

Figure 2.15: The MATLAB publisher can be invoked from the File menu when the
script is open in the editor window.

2. What are those cells? A cell, in a script file, is a set of commands enclosed

between two cell separators (lines that start with %%). You can execute a cell

independent of other cells. You can also execute one cell and then the next

by simply clicking on the cell execution option buttons (see Fig. 2.15) in the

toolbar of the editor. Move your mouse on these buttons to see what each

one does.

Now, open the spiralplot.m file again (if you have closed it) in the editor

and add the following two cells at the end of the file. You can just type %%

to start a new cell or click on the Insert Cell Divider button in the toolbar to

insert it.

%% Polar to Cartesian coordinates

x = r.*cos(theta);

y = r.*sin(theta);

plot(x,y), axis(’equal’)
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%% Polar to Cartesian with pol2cart

[xx,yy] = pol2cart(theta,r);

plot(xx,yy), axis(’equal’)

Now experiment with executing one cell at a time by clicking on the appropri-

ate cell execution button in the toolbar. If you are happy, publish the script

again. The newly published document should have three plots, one polar and

two Cartesian, showing the same spiral.

3. Just a bit of fun with formatting the script: It is possible to format your report

to make it look better. In particular, you can introduce bold text, monospaced

text, a bulleted list, and nicely formatted mathematical equations. Out of

these, formatting equations is something that definitely improves the read-

ability of your report. However, it also requires learning a little bit of LATEX.1

See Section 4.5 on page 135 for more discussion.

Let us introduce a bit of formatting in the script file so that it shows

equations for the spiral and polar to Cartesian conversion formulas as math-

ematical equations. Edit spiralplot.m so that it now looks like the following

(note that there are basically two changes for the mathematical equations).

%% Publishing Reports - A Simple Example

%% A Spiral Plot

% Let us plot a spiral given by

%%

% $$r(\theta) = e^{-\frac{\theta}{10}}, \quad 0\le\theta\le 10\pi$$

%% Create vectors theta and r

.

. (leave the other lines unchanged)

%% Polar to Cartesian coordinates

% using the usual formulas

%%

% $$ x = r\cos\theta, \quad y = r \sin\theta.$$

%

x = r.*cos(theta);

y = r.*sin(theta);

plot(x,y), axis(’equal’)

Now save the file and publish it again. Look at the output. It should have

nice formatted equations that look like

r(θ) = e−
θ
10 , 0 ≤ θ ≤ 10π

and

x = r cos θ, y = r sin θ.

4. Invoke docsearch, do a search for publish, and read (and watch videos) as

much as you would like to learn about the publisher.

1If you have not heard of LATEX, it’s time to Google. For a minimal list of LATEX commands,
see Table 4.2 on page 137.
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2.11 Lesson 11: Symbolic Computation

This lesson requires that you have Symbolic Math Toolbox installed on
your computer in addition to the standard MATLAB. The student ver-
sion of MATLAB includes the Symbolic Math Toolbox. Before proceed-
ing, other users must check (type ver on the command prompt to list all
installed toolboxes) to see if they have access to this toolbox.

Goal: To learn how to do simple symbolic algebra in MATLAB. Such calculations

are done with symbolic variables without resorting to their numerical values.

Time Estimates

Lesson: 20 minutes

Exercises: 60 minutes

What you are going to learn

• How to create symbolic variables and use them in defining functions.

• How to manipulate expressions using symbolic math functions expand, simplify,

subs, factor, pretty, etc.

• How to differentiate and integrate functions symbolically.

• How to solve simultaneous linear and nonlinear equations.

Method: The most important step in carrying out symbolic computation is to

declare the independent variables to be symbolic before you do anything with them.

Suppose you want to use x and y as symbolic variables. Then, you can declare them

to be symbolic using any of the commands that follow:

• x = sym(’x’); y = sym(’y’)

• syms x y

The command sym is the formal command for constructing objects of symbol

class. You can define one symbolic variable at a time using this command. You can

use additional qualifiers in the definition for the symbolic object (e.g., for restricting

a variable to be only real or positive). The command syms is a shortcut to declare

several variables of the same class in one shot. We will use syms in this lesson. For

learning more about these commands and symbolic computation, see Chapter 9.

There are three basic skills to learn in symbolic computations: (i) How to define

expressions and do simple algebra with them (multiply, divide, expand, factorize,

simplify, etc.). (ii) How to do simple calculus (differentiate, integrate, etc.). (iii)

How to solve equations—algebraic and differential equations. Once you know these

skills (Figs. 2.16 and 2.17), you can meet most of your symbolic math calculation

requirements. The rest of it is about honing these skills, learning clever shortcuts

and substitutions, and establishing a personal rapport with the Symbolic Math

Toolbox for having fun with these calculations.
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>> syms x y

>> f = (x+y)^3

f =

(x + y)^3

 

>> expand(f)

ans = 

x^3 + 3*x^2*y + 3*x*y^2 + y^3

 

>> factor(ans)

ans =

(x + y)^3

 

>> z = sin(x+y);

>> expand(z)

ans =

cos(x)*sin(y) + cos(y)*sin(x)

 

>> subs(z, y, pi-x) 

ans =

0
 
>> diff(z,x)

ans =

cos(x + y)

>> z_xx = diff(z,x,2)

z_xx = 

-sin(x + y)
 
>> int(z,x,0,pi/2) 

ans = 

cos(y) + sin(y)

  

Declare x and y to be symbolic
variables. Define a function f as 

 

Use expand to multiply out and
expand algebraic or trigonometric 
expressions.

Use factor to find factors of long 
algebraic expressions.

Define a trigonometric expression.

Substitute y = π-x in expression z.

Differentiate z with respect to x, 
i.e., find .

Find the second derivative of z
with respect to x, i.e., find       .

.
Integrate z with respect to x from
0 to π/2, i.e., evaluate 

. 

Figure 2.16: Lesson 11: Symbolic calculations.
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>> v = [x; y];

>> inner_product = v’*v

inner_product = 

x*conj(x) + y*conj(y) 

>> syms x y real

>> inner_product = v’*v

inner_product =

x^2 + y^2 

>> syms a b

>> exp1 = 'a*x + b*y -3';

>> exp2 = '-x + 2*a*y -5';

>> [x,y] = solve(exp1, exp2) 

x = 

(6*a - 5*b)/(2*a^2 + b) 

y =

(5*a + 3)/(2*a^2 + b) 

>> subs(exp1) 

ans = 

(b*(5*a + 3))/(2*a^2 + b)+(a*(6*a - 5*b))/(2*a^2 + b)-3 

>> simplify(ans) 

ans = 

0 

>> pretty(subs(exp2))

  2 a (5 a + 3)   6 a - 5 b

  ------------- - --------- - 5

        2             2

     2 a  + b      2 a  + b

Define a column vector v = [x  y]T.
Find the inner product vTv. Note
that MATLAB assumes x and y to
be complex (default data type)
variables and hence

Now declare (redefine) x and y to 
be real and evaluate the inner 
product again.  Since x and y are real,  

Solve two simultaneous algebraic 
equations for x and y:

Use pretty to get the expression in 
more readable form.

Simplify the answer to see if it
reduces to zero (as it must in order
to satisfy the equation). 

Substitute the values of x and y just 
found in exp1 to check the result. 

.

.

.

Figure 2.17: Lesson 11: Symbolic calculations.
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EXERCISES

1. Some basic symbolic manipulations: Define the following function sym-

bolically

f(x) = (x2 − 4x)(x2 − 4x+ 1)− 20.

(a) Expand f(x) using expand.

(b) Show that (x2 − 4x− 4) is a factor of f by dividing f with this factor.

(c) Factorize f using the symbolic function factor and verify the factor you

used in (b).

(d) Find the roots of one of the two factors. (Hint: Take one of the factors

as an expression and use solve to find two roots x1 and x2.)

(e) Substitute one of the roots for x, say x = x1, in f and simplify the

expression to show that f(x1) = 0.

2. Computation with symbolic vectors: Define r = [x y]T where x and y

are declared as real variables. Compute

(a) rrT (the outer product of r).

(b)
∫ 1

0
rrT dx.

(c)
∫ 1

0

∫ 1

0
rrT dxdy.

(d) Determinant of
∫ 1

0

∫ 1

0
rrT dxdy.

3. Solving simultaneous linear equations: Solve the following set of simul-

taneous linear algebraic equations.

x+ 3y − z = 2

x− y + z = 3

3x− 5y = 4.

4. Solving simultaneous nonlinear equations: Solve the following nonlinear

algebraic equations simultaneously.

3x2 − y − 3 = 0

x4 −+2y2 + x2y − 16 = 0.

5. Integrals: Find the following integrals:

(i)

∫ ∞
0

e−xdx, (ii)

∫ ∞
0

e−x
2

dx, and (iii)

∫ ∞
0

e−x
2

sin(x)dx.

6. Solving differential equations: Use function dsolve to solve the following

differential equations along with the given initial conditions.

(a) dx
dt + x2 = 0, x(0) = x0.

(b) d2y
dt2 + ω2y = 0, y(0) = y0 and dy

dt (0) = v0.

[First, use on-line help on dsolve to see how to enter the differential equation

and the initial conditions as input to the function. Please note that this

function requires the differential operator d
dt to be denoted by D. Therefore,

the first differential equation will be written as Dx + x^2 = 0.]





3. Interactive
Computation

In principle, one can do all calculations in MATLAB interactively by entering com-

mands sequentially in the command window, although a script file (explained in

Section 4.1) is perhaps a better choice for computations that involve more than

a few steps. The interactive mode of computation, however, makes MATLAB a

powerful scientific calculator that puts hundreds of built-in mathematical functions

for numerical calculations and sophisticated graphics at the fingertips of the user.

In this chapter, we introduce you to some of MATLAB’s built-in functions and

capabilities, through examples of interactive computation. The basic things to keep

in mind are:

Where to type commands: All MATLAB commands or expressions are entered

in the command window at the MATLAB prompt (�).

How to execute commands: To execute a command or statement, you must

press return or enter at the end.

What to do if the command is very long: If your command does not fit on

one line, you can continue the command on the next line if you type three

consecutive periods at the end of the first line. You can keep continuing this

way until the length of your command hits the limit, which is 4,096 characters.

For more information, see the discussion on continuation on pages 65 and 114.

How to name variables: Names of variables must begin with a letter. After the

first letter, any number of digits or underscores may be used, but MATLAB

remembers only the first 31 characters.

What is the precision of computation: All computations are carried out in-

ternally in double precision unless specified otherwise. The appearance of

numbers on the screen, however, depends on the format in use (see next

item).

How to control the display format of the output: The output appearance of

floating-point numbers (number of digits after the decimal, etc.) is controlled
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with the format command. The default is format short, which displays four

digits after the decimal. For other available formats and how to change them,

see Section 1.6.3, page 7, or on-line help on format.

How to suppress the screen output: A semicolon (;) at the end of a command

suppresses the screen output, although the command is carried out and the

result is saved in the variable assigned to the command or in the default

variable ans.

How to recall previously typed commands: Use the up-arrow key to recall

previously typed commands. MATLAB uses smart recall, so you can also type

one or two letters of your command and use the up-arrow key for recalling the

command starting with those letters. Also, all your commands are recorded

in the command history subwindow (see Fig. 1.3 on page 8). You can double-

click on any command in the command history subwindow to execute it in

the command window.

How to set paged-screen display: For paged-screen display (one screenful of

output display at a time) use the command more on.

Where and how to save results: If you need to save some of the computed re-

sults for later processing, you can save the variables in a file in binary or

ASCII format with the save command. See Section 3.7, page 90, for more

information.

How to save figures: You can save a figure in a .�g file by selecting File → Save
As from the figure window. Once you save it, you can open it later in MAT-

LAB using the open command or by selecting File → Open... from the

MATLAB main menu. You can also save figures in one of numerous formats

for printing or exporting to other applications (see Section 5.5, page 185).

How to print your work: You can print your entire session in MATLAB, part

of it, or selected segments of it, in one of several ways. The simplest way,

perhaps, is to create a diary with the diary command (see Section 3.7.3 for

more information) and save your entire session in it. Then you can print the

diary just the way you would print any other file on your computer. On PCs

and Macs, however, you can print the session by selecting Print from the File
menu. (Before you print, make sure that the command window is the active

window. If it isn’t, just click on the command window to make it active.)

What about comments: MATLAB takes anything following a % as a comment

and ignores it.1 You are not likely to use a lot of comments while computing

interactively, but you will use them when you write programs in MATLAB.

Because MATLAB derives most of its power from matrix computations and

assumes every variable to be, at least potentially, a matrix, we start with descrip-

tions and examples of how to enter, index, manipulate, and perform some useful

calculations with matrices.

1The exception to this rule is when the % appears in a quote-enclosed character string or in
certain input/output format statements.
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3.1 Matrices and Vectors

3.1.1 Input For on-line help

type:

help elmatA matrix is entered row-wise, with consecutive elements of a row separated by a

space or a comma, and the rows separated by semicolons or carriage returns. The

entire matrix must be enclosed within square brackets. Elements of the matrix may

be real numbers, complex numbers, or valid MATLAB expressions.2

Examples:

Matrix MATLAB input command

A =

[
1 2 5
3 9 0

]
A = [1 2 5; 3 9 0]

B =

[
2x lnx+ sin y
5i 3 + 2i

]
B = [2*x log(x)+sin(y); 5i 3+2i]

(See the note in the margin.)

For the matrix
B command to
work, variables
x and y must be
predefined, e.g.,
x=1; y=2;, etc.Special cases: Vectors and scalars

• A vector is a special case of a matrix, with just one row or one column. It is

entered the same way as a matrix.

Examples: u = [1 3 9] produces a row vector, and

v = [1; 3; 9] produces a column vector.

• A scalar does not need brackets.

Example: g = 9.81;

• Square brackets with no elements between them create a null matrix.

Example: X = [ ]. (See Fig. 3.1 for a more useful example.)

Continuation

If it is not possible to type the entire input on the same line, then use three consec-

utive periods (...) to signal continuation and continue the input on the next line.

The three periods are called an ellipsis. For example,

A = [1/3 5.55*sin(x) 9.35 0.097;...

3/(x+2*log(x)) 3 0 6.555; ...

(5*x-23)/55 x-3 x*sin(x) sqrt(3)];

produces the intended 3 × 4 matrix A (provided, of course, x has been assigned

a value before). A matrix can also be entered across multiple lines using carriage

returns at the end of each row. In this case, the semicolons and ellipses at the end

of each row may be omitted. Thus, the following three commands are equivalent:

A = [1 3 9; 5 10 15; 0 0 -5];

A = [1 3 9

5 10 15

0 0 -5];

A = [1 3 9; 5 10 ...

15; 0 0 -5];

2The box on the right lets you know that you can learn more about this topic from MATLAB’s
on-line help, on the help topic called elmat (for elementary matrix manipulations).
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Continuation across several input lines achieved through an ellipsis is not limited

to matrix input. This construct may be used for other commands and for a long

list of command arguments (see Section 4.3.2, page 114), as long as the command

does not exceed 4,096 characters.

3.1.2 Indexing (or subscripting)

Once a matrix exists, its elements are accessed by specifying their row and column

indices. Thus, A(i,j) in MATLAB refers to the element aij of matrix A, i.e.,

the element in the ith row and jth column. This notation is fairly common in

computational software packages and programming languages. MATLAB, however,

provides a much higher level of index specification—it allows a range of rows and

columns to be specified at the same time. For example, the statement A(m:n,k:l)

specifies rows m to n and columns k to l of matrix A. When the rows (or columns)

to be specified range over all rows (or columns) of the matrix, a colon can be used

as the row (or column) index. Thus, A(:,5:20) refers to the elements in columns

5 through 20 of all the rows of matrix A. This feature makes matrix manipulation

much easier and provides a way to take advantage of the “vectorized” nature of

calculations in MATLAB. (See Fig. 3.1 for examples.)

Dimension

Matrix dimensions are determined automatically by MATLAB, i.e., no explicit di-

mension declarations are required. The dimensions of an existing matrix A may be

obtained with the command size(A) or more explicitly with [m,n]=size(A), which

assigns the number of rows and columns of A to the variables m and n, respectively.

When a matrix is entered by specifying a single element or a few elements of the

matrix, MATLAB creates a matrix just big enough to accommodate the elements.

Thus, if the matrices B and C do not exist already, then

B(2,3) = 5; produces B =

[
0 0 0
0 0 5

]
,

C(3,1:3) = [1 2 3]; produces C =

 0 0 0
0 0 0
1 2 3

.
3.1.3 Matrix manipulation

As you can see from examples in Fig. 3.1, it is fairly easy to correct wrong entries

of a matrix, extract any part or submatrix of a matrix, or delete or add rows and

columns. These manipulations are done with MATLAB’s smart indexing feature.

By specifying vectors as the row and column indices of a matrix, one can reference

and modify any submatrix of a matrix. Thus, if A is a 10×10 matrix, B is a 5×10

matrix, and y is a 20 elements long row vector, then

A([1 3 6 9],:) = [B(1:3,:); y(1:10)]
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>> A = rand(4,3)

A =
    0.8147    0.6324    0.9575
    0.9058    0.0975    0.9649
    0.1270    0.2785    0.1576
    0.9134    0.5469    0.9706

>> A(3:4, 2:3)

ans =
    0.2785    0.1576
    0.5469    0.9706

>> A(:,4) = A(:,1)

A =
    0.8147    0.6324    0.9575    0.8147
    0.9058    0.0975    0.9649    0.9058
    0.1270    0.2785    0.1576    0.1270
    0.9134    0.5469    0.9706    0.9134

>> A(2:4,2:4) = eye(3)

A =
    0.8147    0.6324    0.9575    0.8147
    0.9058    1.0000         0         0
    0.1270         0    1.0000         0
    0.9134         0         0    1.0000

>> A([1 3],:) = []

A =
    0.9058    1.0000         0         0
    0.9134         0         0    1.0000

>> A = round(A)

A =
     1     1     0     0
     1     0     0     1

>> A(:)'

ans =
     1     1     1     0     0     0     0    1

Create a 4 x 3 random matrix A.

Get those elements of A that are 
located in rows 3 to 4 and columns
2 to 3. 

Add a fourth column to A and set  
it equal to the first column of A.

Replace the last 3 x 3 submatrix 
of A (rows 2 to 4,  columns 2 to 4)
by a 3 x 3 identity matrix.

 Delete the first and third rows of A.

Round off all entries of A.

String out all elements of A in a 
row (note the transpose at the end).

Figure 3.1: Examples of matrix input and matrix index manipulation.
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replaces first, third, and sixth rows of A by the first three rows of B, and the ninth

row of A by the first 10 elements of y. In such manipulations, it is imperative that

the sizes of the submatrices to be manipulated are compatible. For example, in the

previous assignment, the number of columns in A and B must be the same, and

the total number of rows specified on the right-hand side must be the same as the

number of rows specified on the left.

Thus, from a given matrix, picking out either a range of rows or columns or a set

of noncontiguous rows or columns is straightforward. This can be done by creating

index vectors with numbers representing the desired rows or columns.

So, if Q =


2 3 6 0 5
0 0 20 −4 3
1 2 3 9 8
2 −5 5 −5 6
5 10 15 20 25

 and v =
[

1 4 5
]
,

then Q(v,:) =

 2 3 6 0 5
2 −5 5 −5 6
5 10 15 20 25

 and Q(:,v) =


2 0 5
0 −4 3
1 9 8
2 −5 6
5 20 25

.
Logicals (0-1) in the matrix index: Only nonzero positive integers are legal

index entries for a matrix. The only exception is the logical 0 (zero). You can use

vectors made up of zeros and ones in the matrix index if

1. The vector is produced by logical or relational operations (see Sections 3.2.2

and 3.2.3).

2. The 0-1 vector created by you is converted into a logical array with the com-

mand logical.

In either case, the index vector picks out rows or columns corresponding to the

location of ones. For example, to get the first, fourth, and fifth rows of Q with 0-1

vectors, you can do

v = [1 0 0 1 1]; v = logical(v); Q(v,:).

Reshaping matrices

Matrices can be reshaped into a vector or any other appropriately sized matrix:

As a vector: All the elements of matrix A can be strung into a single-column vec-

tor b by the command b = A(:) (matrix A is stacked in vector b columnwise).

As a differently sized matrix: If matrix A is anm×nmatrix, it can be reshaped

into a p× q matrix with the command reshape(A,p,q), as long as m× n =

p× q. Thus, for a 6× 6 matrix A,

reshape(A,9,4) (or reshape(A,[9,4])) transforms A into a 9× 4 matrix

reshape(A,3,[]) puts A into 3 rows and appropriate number of columns n

such that 3× n = numel(A) (number of elements of A).

Now let us look at some frequently used manipulations.
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Transpose

The transpose of matrix A is obtained by typing A’, i.e., the name of the matrix

followed by the single right quote. For a real matrix A, the command B=A’ produces

B = AT , that is, bij = aji, and for a complex matrix A, B=A’ produces the conjugate

transpose B = ĀT , that is, bij = āji.

Examples:

If A =

[
2 3
6 7

]
, then B = A’ gives B =

[
2 6
3 7

]
.

If C =

[
2 3 + 1i
6i 7i

]
, then Ct = C’ gives Ct =

[
2 −6i

3− 1i −7i

]
.

If u = [0 1 2 · · · 9], then v = u(3:6)’ gives v =

 2
3
4
5

.
Initialization

Initialization of a matrix is not necessary in MATLAB. However, it is advisable in

the following two cases.

1. Large matrices: If you are going to generate or manipulate a large matrix,

initialize the matrix to a zero matrix of the required dimension. An m × n
matrix can be initialized by the command A=zeros(m,n). The initialization

reserves for the matrix a contiguous block in the computer’s memory. Matrix

operations performed on such matrices are generally more efficient.

2. Dynamic matrices: If the rows or columns of a matrix are computed in a

loop (e.g., for or while loop) and appended to the matrix (see the following)

in each execution of the loop, then you might want to initialize the matrix

to a null matrix before the loop starts. A null matrix A is created by the

command A=[ ]. Once created, a row or column of any size may be appended

to A as described next.

Appending a row or column

A row can be easily appended to an existing matrix, provided the row has the same

length as the length of the rows of the existing matrix. The same thing goes for

columns. The command A=[A; u] appends a row vector u to the rows of A, while

A=[A v] appends a column vector v to the columns of A. A row or column of any

size may be appended to a null matrix.

Examples: If

A =

[
1 0 0
0 1 0
0 0 1

]
, u =

[
5 6 7

]
, and v =

[
2
3
4

]
,

then
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A1 = [A; u] produces A1 =

 1 0 0
0 1 0
0 0 1
5 6 7

, a 4× 3 matrix,

A2 = [A v] produces A2 =

[
1 0 0 2
0 1 0 3
0 0 1 4

]
, a 3× 4 matrix,

A3 = [A u’] produces A3 =

[
1 0 0 5
0 1 0 6
0 0 1 7

]
, a 3× 4 matrix,

A4 = [A u] produces an error,

B = [ ]; B = [B; 1 2 3] produces B =
[

1 2 3
]
, and

B = [ ]; for k = 1:3, B = [B; k k+1 k+2]; end produces B =

[
1 2 3
2 3 4
3 4 5

]
.

You can also use the function cat(dim, A, B) to concatenate matrix B to

matrix A along the dimension dim (for 2-D matrices, dim=1 for rows and dim=2

for columns). Of course, the dimensions of the two matrices must be compatible.

Deleting a row or column

Any row(s) or column(s) of a matrix can be deleted by setting the row or column

equal to a null vector.

Examples:

A = rand(6); u = rand(10,1); create a 6× 6 matrix A and 10× 1 vector u,
A(2,:) = [ ] deletes the second row of matrix, A,
A(:,3:5) = [ ] deletes the third through fifth columns of A,
A([1 3],:) = [ ] deletes the first and the third row of A, and
u(5:length(u)) = [ ] deletes all elements of vector u except 1 through 4.

3.1.4 Utility matricesFor on-line help

type:

help elmat To aid matrix generation and manipulation, MATLAB provides many useful utility
matrices. For example,

eye(m,n) returns an m by n matrix with ones on the main diagonal,
zeros(m,n) returns an m by n matrix of zeros,
ones(m,n) returns an m by n matrix of ones,
rand(m,n) returns an m by n matrix of random numbers,
randn(m,n) returns an m by n matrix of normally distributed numbers,
diag(v) generates a diagonal matrix with vector v on the diagonal,
diag(A) extracts the diagonal of matrix A as a vector, and
diag(A,1) extracts the first upper off-diagonal vector of matrix A.

The first four commands with a single argument, e.g., ones(m), produce square

matrices of dimension m. For example, eye(3) produces a 3 × 3 identity matrix.

A matrix can be built with many block matrices as well. See examples in Fig. 3.2.

Here is a list of some more functions used in matrix manipulation:
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>> B = [ones(3) zeros(3,2); zeros(2,3) 4*eye(2)]

B =

     1     1     1     0     0
     1     1     1     0     0
     1     1     1     0     0
     0     0     0     4     0
     0     0     0     0     4

>> diag(B)'

ans =

     1     1     1     4     4

>> diag(B,1)'

ans =

     1     1     0     0

Create a matrix B using submatrices
made up of elementary matrices:
ones, zeros, and the identity matrix
of the specified sizes.

Create a matrix D by putting d on the 
main diagonal, d1 on the first upper
diagonal, and d2 on the second 
lower diagonal.

Create vectors d, d1, and d2  of
length 4, 3, and 2, respectively.

eye(n) creates an n x n identity 
matrix.  The commands zeros,
ones,  and rand work  in  a
similar way.

This command pulls out the diagonal
of B in a row vector. Without the
transpose, the result would obviously
be a column vector.

The second argument of the command
specifies the off-diagonal vector to be
pulled out. Here we get the first upper
off-diagonal vector. A negative
value of the argument specifies the
lower off-diagonal vectors.

>> eye(3)

ans =

     1     0     0
     0     1     0
     0     0     1

>> d = [2 4 6 8]; 
>> d1 = [-3 -3 -3];
>> d2 = [-1 -1];
>> D = diag(d) + diag(d1,1) + diag(d2,-2)

D =

     2    -3     0     0
     0     4    -3     0
    -1     0     6    -3
     0    -1     0     8

Figure 3.2: Examples of matrix manipulation using utility matrices and functions.
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rot90 rotates a matrix by 90o,
fliplr flips a matrix from left to right,
flipud flips a matrix from up to down,
tril extracts the lower triangular part of a matrix,
triu extracts the upper triangular part of a matrix, and
reshape changes the shape of a matrix.

Special matrices

There is also a set of built-in special matrices such as hadamard, hankel, hilb,

invhilb, kron, pascal, toeplitz, vander, magic, etc. For a complete list

and help on these matrices, type help elmat. (In earlier versions of MATLAB,

these matrices were under specmat.)

3.1.5 Creating vectors with linspace and logspace

Very often we need to create a vector of numbers over a given range with a specified

increment. The general command to do this in MATLAB is

v = InitialValue :Increment :FinalValue

The three values in the preceding assignment can also be valid MATLAB expres-

sions. If no increment is specified, MATLAB uses the default increment of 1.

Examples:

a = 0:10:100 produces a = [ 0 10 20 . . . 100 ],

b = 0:pi/50:2*pi produces b = [ 0 π
50

2π
50 . . . 2π ], i.e., a linearly

spaced vector from 0 to 2π spaced at π/50,

u = 2:10 produces a = [ 2 3 4 . . . 10 ].

As you may notice, no square brackets are required if a vector is generated this

way; however, a vector assignment such as u=[1:10 33:-2:19] does require square

brackets to force the concatenation of the two vectors: [1 2 3 . . . 10] and [33 31

29 . . . 19]. Finally, we mention the use of two frequently used built-in functions

to generate vectors:

linspace(a,b,n) generates a linearly spaced vector of length n from a to b.

Example: u=linspace(0,20,5) generates u=[0 5 10 15 20].

Thus, u=linspace(a,b,n) is the same as u=a:(b-a)/(n-1):b.

logspace(a,b,n) generates a logarithmically spaced vector of length n from

10a to 10b.

Example: v=logspace(0,3,4) generates v=[1 10 100 1000].

Thus, logspace(a,b,n) is the same as 10.^(linspace(a,b,n)). (The array

operation .^ is discussed in the next section.)

Special vectors, such as vectors of zeros or ones of a specific length, can be

created with the utility matrix functions zeros, ones, etc.

Examples:

u = zeros(1,1000) initializes a 1000-element-long row vector, and

v = ones(10,1) creates a 10-element-long column vector of ones.
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3.2 Matrix and Array Operations

3.2.1 Arithmetic operations

For people who are used to programming in a conventional language such as Pascal,

Fortran, or C, it is an absolute delight to be able to write a matrix product as C=A*B

where A is an m× n matrix and B is an n× k matrix. MATLAB allows

+ addition
− subtraction
∗ multiplication
/ division
ˆ (caret) exponentiation For on-line help

type:

help arithto be carried out on matrices in straightforward ways as long as the operation makes

sense mathematically and the operands are compatible. Thus,

A+B or A-B is valid if A and B are of the same size,

A∗B is valid if A’s number of columns equals B’s number of rows,

A/B is valid and equals A ·B−1 for same-size square matrices, and

A^2 which equals A*A, makes sense only if A is square.

In all these commands, if B is replaced by a scalar, say α, the arithmetic oper-

ations are still carried out. In this case, the command A+α adds α to each element

of A, the command A∗α (or α∗A) multiplies each element of A by α and so on.

Vectors are just treated as a single row or a column matrix and therefore a com-

mand such as w=u∗v, where u and v are same-size vectors, say m× 1, produces an

error (because you cannot multiply an m×1 matrix with an m×1 matrix), whereas

w=u∗v′ and w=u′∗v execute correctly, producing the outer and inner products of the

two vectors, respectively (see examples in Fig 2.7 on page 41).

The left division: In addition to the normal or right division (/), there is a

left division (\) in MATLAB. This division is used to solve a matrix equation. In

particular, the command x=A\b solves the matrix equation Ax = b. Thus A\b is

almost the same as inv(A)*b but faster and more numerically stable than computing

inv(A)*b. In the degenerate case of scalars, 5\3 gives 0.6, which is 3/5 or 5−1 ∗ 3.

Array operation: How does one get products such as [u1v1 u2v2 u3v3 . . . unvn]

from two vectors u and v? No, you do not have to use for loops. You can do array

operations—operations done on an element-by-element basis. Element-by-element
For on-line help

type:

help slashmultiplication, division, and exponentiation between two matrices or vectors of the

same size are done by preceding the corresponding arithmetic operators by a period:

.∗ element-by-element multiplication

./ element-by-element left division

.\ element-by-element right division

.ˆ element-by-element exponentiation

.′ nonconjugated transpose
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Examples: u.∗v produces [u1v1 u2v2 u3v3 . . .],
u./v produces [u1/v1 u2/v2 u3/v3 . . .], and
u.^v produces [uv11 , u

v2
2 , u

v3
3 , . . .].

The same is true for matrices. For two same-sized matrices A and B, the

command C=A.*B produces a matrix C with elements Cij = AijBij . Clearly, there is

a big difference between A^2 and A.^2 (see Fig. 2.7 on page 41). Once again, scalars

do enjoy a special status. For example, 1./v happily computes [1/v1 1/v2 1/v3 . . .],

and pi.^v gives [πv1 πv2 πv3 . . .], whereas u./v or u.^v produces an error if u and

v are not of the same size. See Section 3.4 on page 81 for more discussion on array

operations.

3.2.2 Relational operationsFor on-line help

type:

help relop There are six relational operators in MATLAB:

< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
˜= not equal

These operations result in a vector or matrix of the same size as the operands,

with 1 where the relation is true and 0 where it is false.

Examples: If x = [1 5 3 7] and y = [0 2 8 7], then

k = x < y results in k = [0 0 1 0] because xi < yi for i = 3,
k = x <= y results in k = [0 0 1 1] because xi ≤ yi for i = 3 and 4,
k = x > y results in k = [1 1 0 0] because xi > yi for i = 1 and 2,
k = x >= y results in k = [1 1 0 1] because xi ≥ yi for i = 1, 2, and 4,
k = x == y results in k = [0 0 0 1] because xi = yi for i = 4, and
k = x ~= y results in k = [1 1 1 0] because xi 6= yi for i = 1, 2, and 3.

Although these operations are usually used in conditional statements such as if-

then-else to branch out to different cases, they can be used to do pretty sophisticated

matrix manipulation. For example, u=v(v>=sin(pi/3)) finds all elements of vector

v such that vi ≥ sin π
3 and stores them in vector u. Two or more of these operations

can also be combined with the help of logical operators (described next).

3.2.3 Logical operations

There are four logical operators:

& logical AND
| logical OR
˜ logical complement (NOT)
xor exclusive OR
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These operators work in a similar way as the relational operators and produce

vectors or matrices of the same size as the operands, with 1 where the condition is

true and 0 where false.

Examples: For two vectors x = [0 5 3 7] and y = [0 2 8 7],

m = (x>y)&(x>4) results in m =[0 1 0 0], because the condition is true only for x2,
n = x|y results in n =[0 1 1 1], because either xi or yi is nonzero for i =[2 3 4],
m = ~(x|y) results in m =[1 0 0 0], which is the logical complement of x|y, and
p = xor(x,y) results in p =[0 0 0 0], because there is no such index i

for which xi or yi, but not both, is nonzero.

Because the output of the logical operations is a 0-1 vector or a 0-1 matrix, the

output can be used as the index of a matrix to extract appropriate elements. For

example, to see those elements of x that satisfy both the conditions (x > y) and

(x > 4), type x((x>y)&(x>4)).

In addition to these logical operators, there are many useful built-in logical

functions, such as:

all true (= 1) if all elements of a vector are true,
Example: all(x<0) returns 1 if each element of x is negative.

any true (= 1) if any element of a vector is true,
Example: any(x) returns 1 if any element of x is nonzero.

exist true (= 1) if the argument (a variable or a function) exists,
isempty true (= 1) for an empty matrix,
isinf true for all infinite elements of a matrix,
isfinite true for all finite elements of a matrix,
isnan3 true for all elements of a matrix that are not a number (NaN), and
find finds indices of nonzero elements of a matrix.

Examples: find(x) returns [2 3 4] for x=[0 2 5 7] and
[r,c]=find(A>100) returns the row and column indices
i and j of A, in vectors r and c, for which Aij > 100.

To complete this list of logical functions, we just mention isreal, issparse,

isstr, and ischar.

3.2.4 Elementary math functions For on-line help

type:

help elfunAll of the following built-in math functions take matrix inputs and perform array

operations (element by element) on them. Thus, they produce an output matrix of

the same size as the input matrix.

Trigonometric functions

sin, sind sine, sinh hyperbolic sine,
asin, asind inverse sine, asinh inverse hyperbolic sine,
cos, cosd cosine, cosh hyperbolic cosine,
acos, acosd inverse cosine, acosh inverse hyperbolic cosine,
tan, tand tangent, tanh hyperbolic tangent,

3The function isnan is the only way to check for NaNs in a matrix because any operation with a
NaN produces a NaN and two NaNs are not equal to each other. Thus, find(A==nan) cannot find
the indices of NaNs in matrix A. Of course, you could use some clever trick, such as find(A*0~=0).
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atan, atand inverse tangent, atanh inverse hyperbolic tangent,
atan2 four-quadrant tan−1,
sec, secd secant, sech hyperbolic secant,
asec, asecd inverse secant, asech inverse hyperbolic secant,
csc, cscd cosecant, csch hyperbolic cosecant,
acsc, acscd inverse cosecant, acsch inverse hyperbolic cosecant,
cot, cotd cotangent, coth hyperbolic cotangent,
acot, acotd inverse cotangent, and acoth inverse hyperbolic cotangent.

The angles given to these functions as arguments must be in radians for sin,

cos, etc., and in degrees for sind, cosd, etc. Thus, sin(pi/2) and sind(90) pro-

duce the same result. All of these functions, except atan2, take a single scalar,

vector, or matrix as input argument. The function atan2 takes two input ar-

guments, atan2(y,x), and produces the four-quadrant inverse tangent such that

−π ≤ tan−1 y
x ≤ π. This gives the angle a rectangular to polar conversion.

Examples: If q=[0 pi/2 pi], x=[1 -1 -1 1], and y=[1 1 -1 -1], then

sin(q) gives [0 1 0],
sinh(q) gives [0 2.3013 11.5487],
atan(y./x) gives [0.7854 -0.7854 0.7854 -0.7854], and
atan2(y,x) gives [0.7854 2.3562 -2.3562 -0.7854].

Exponential functions

exp exponential,

Example: exp(A) produces a matrix with elements e(Aij).
So how do you compute eA? See the next section.

log natural logarithm,
Example: log(A) produces a matrix with elements ln(Aij).

log10 base 10 logarithm,
Example: log10(A) produces a matrix with elements log10(Aij).

sqrt square root,

Example: sqrt(A) produces a matrix with elements
√
Aij .

But what about
√
A? See the next section.

nthroot real nth root of real numbers,

Example: nthroot(A,3) produces a matrix with elements 3
√
Aij .

In addition, log2, pow2, nextpow2, realpow, reallog, realsqrt, log1p (for

log(1 + x)), and exp1m (for ex − 1) functions exist in MATLAB. Clearly, these are

array operations. You can, however, also compute matrix exponential eA, matrix

square root
√
A, etc. See Section 3.2.5.

Complex functions

abs absolute value, Example: abs(A) produces a matrix of absolute values |Aij |.
angle phase angle, Example: angle(A) gives the phase angles of complex A.
complex constructs complex numbers from given real and imaginary parts,

Example: complex(A,B) produces A+Bi.
conj complex conjugate, Example: conj(A) produces a matrix with elements Āij .
imag imaginary part, Example: imag(A) extracts the imaginary part of A.
real real part, Example: real(A) extracts the real part of A.
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Round-off functions

fix round toward 0,
Example: fix([-2.33 2.66]) = [−2 2].

floor round toward −∞,
Example: floor([-2.33 2.66]) = [−3 2].

ceil round toward +∞,
Example: ceil([-2.33 2.66]) = [−2 3].

mod modulus after division; mod(a,b) is the same as a-floor(a./b)*b,
Example: mod(26,5) = 1 and mod(-26,5) = 4.

round round toward the nearest integer,
Example: round([-2.33 2.66]) = [−2 3].

rem remainder after division, rem(a,b) is the same as a-fix(a./b)*b,
Example: If a=[-1.5 7], b=[2 3], then rem(a,b) = [−1.5 1].

sign signum function,
Example: sign([-2.33 2.66]) = [−1 1].

3.2.5 Matrix functions For on-line help

type:

help matfunWe discussed the difference between the array exponentiation A.^2 and the matrix

exponentiation A^2 earlier. There are some built-in functions that are truly matrix

functions and that also have array counterparts. The matrix functions are

expm(A) finds the exponential of matrix A, eA,

logm(A) finds log(A) such that A = elog(A), and

sqrtm(A) finds
√
A.

The array counterparts of these functions are exp, log, and sqrt, which operate

on each element of the input matrix (see Fig. 3.3 for examples). The matrix ex-

ponential function expm also has a specialized variant: expm1. See the on-line help

or on-line documentation for their proper usage. MATLAB also provides a general

matrix function funm for evaluating true matrix functions.

3.3 Character Strings For on-line help

type:

help strfunAll character strings are entered within two single right-quote characters—’string’.

MATLAB treats every string as a row vector with one element per character. For

example, typing message = ’Leave me alone’ creates a vector, named message,

of size 1× 14 (spaces in strings count as characters). Therefore, to create a column

vector of text objects, each text string must have exactly the same number of char-

acters. For example, the command

names = [’John’; ’Ravi’; ’Mary’; ’Xiao’]

creates a column vector with one name per row, although, to MATLAB, the vari-

able names is a 4 × 4 matrix. Clearly, the command howdy=[’Hi’; ’Hello’;

’Namaste’] will result in an error because each row has a different length. Text

strings of different lengths can be made to be of equal length by padding them with

blanks. Thus, the correct input for howdy will be

howdy = [’Hi     ’;’Hello  ’; ’Namaste’]

with each string being seven characters long ( denotes a space).
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>> A = [1 2; 3 4]

A =

     1     2
     3     4

>> asqrt = sqrt(A)

asqrt =

    1.0000    1.4142
    1.7321    2.0000

>> Asqrt = sqrtm(A)

Asqrt =

   0.5537 + 0.4644i   0.8070 - 0.2124i
   1.2104 - 0.3186i   1.7641 + 0.1458i

>> exp_aij = exp(A)

exp_aij =

    2.7183    7.3891
   20.0855   54.5982

>> exp_A = expm(A)

exp_A =

   51.9690   74.7366
  112.1048  164.0738

>> logm(exp_A)

ans =

    1.0000    2.0000
    3.0000    4.0000

sqrt is an array operation. It gives 
the square root of each element of A
as is evident from the output here.

sqrtm, on the other hand, is a true
matrix function, i.e., it computes A.
Thus [Asqrt]*[Asqrt] = [A].

Similarly, exp gives an element-by-
element exponential of the matrix, 
whereas expm finds the true matrix 
exponential eA. 

Since exp_A = eA , the matrix 
logarithm, logm, should give back 
A, (because log(eA)=A).  This is
exactly what we get here.

Figure 3.3: Examples of differences between matrix functions and array functions.
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An easier way of doing the same thing is to use the command char, which

converts strings to a matrix. char(s1,s2,...) puts each string argument s1, s2,

etc., in a row and creates a string matrix by padding each row with the appropriate

number of blanks. Thus, to create the same howdy as previously, we type

howdy = char(’Hi’,’Hello’,’Namaste’).

You can also use strvcat functions to create string arrays from string arguments.

However, char is the best function for this purpose.

Because the same quote character (the single right quote) is used to signal the

beginning as well as the end of a string, this character cannot be used inside a

string for a quote or apostrophe. For a quote within a string you must use two

single quotes, ’’. Thus, to title a graph with 3-D View of Boomerang’s Path, you

write title(’3-D View of Boomerang’’s Path’).

3.3.1 Manipulating character strings

Character strings can be manipulated just like matrices. Thus, the command,

c=[howdy(2,:) names(3,:)], produces Hello Mary as the output for c. This fea-

ture can be used along with number-to-string conversion functions, such as num2str

and int2str, to create text objects containing dynamic values of variables. Such

text objects are particularly useful in creating titles for figures and other graphics

annotation commands (see Chapter 5). For example, suppose you want to produce

a few variance-study graphs with different values of the sample size n, an integer

variable. Producing the title of the graph with the command

title([’Variance study with sample size n = ’,int2str(n)])

writes titles with the current value of n printed in the title.

There are several built-in functions for character string manipulation:

char creates character arrays using automatic padding,
also, converts ASCII numeric values to character arrays,

abs converts characters to their ASCII numeric values,
blanks(n) creates n blank characters,
deblank removes the trailing blanks from a string,
eval executes the string as a command (see Section 3.3.2),
findstr finds the specified substring in a given string,
int2str converts integers to strings (see example given earleir),
ischar true (= 1) for character arrays,
isletter true (= 1) for alphabetical characters,
mat2str converts a matrix to a string,
num2str converts numbers to strings (similar to int2str),
strcmp compares two strings, returns 1 if same,
strncmp compares the first n characters in given strings,
strcat concatenates strings horizontally, ignoring trailing blanks,
strvcat concatenates strings vertically, ignoring empty strings, etc.

The functions char and strvcat seem to do the same thing—create string arrays

by putting each argument string in a row. So, what is the difference? char does not

ignore empty strings but strvcat does. To see the difference, try the commands

char(’up’,’’,’down’) and strvcat(’up’,’’,’down’).
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3.3.2 The eval functionFor on-line help

type:

help eval MATLAB provides a powerful function eval to evaluate text strings and execute

them if they contain valid MATLAB commands. For example, the command

eval(’x = 5*sin(pi/3)’)

computes x = 5 sin(π/3) and is equivalent to typing x=5*sin(pi/3) on the com-

mand prompt.

There are many uses of the eval function. One use is in creating or loading

sequentially numbered data files. For example, you can use eval to run a set of

commands 10 times while you take a two-hour lunch break. The following script

runs the set of commands 10 times and saves the output variables in 10 different

files.

% Example of use of EVAL function

% A script file that lets you go out for lunch while MATLAB slogs

%----------------------

t = [0:0.1:1000]; % t has 10001 elements

for k = 1:10

outputfile = [’result’,int2str(k)]; % see explanation below

% write commands to run your function here

theta = k*pi*t;

x = sin(theta); % compute x

y = cos(theta); % compute y

z = x.*y.^2; % compute z

% now save variables x, y, and z in a Mat-file

eval([’save ’,outputfile,’ x y z’]) % see explanation below

end

The commands used here are a little subtle, so read them carefully. In particular,

note that

• The first command, outputfile=..., creates a name by combining the counter

of the for loop with the string result, thus producing the names result1,

result2, result3, etc., as the loop counter k takes the values 1, 2, 3, etc.

• The last command eval(...) has one input argument—a long string that is

made up of three strings: ’save ’, outputfile, and ’ x y z’. Note that

whereas save and x y z are enclosed within quotes to make them character

strings, the variable outputfile is not enclosed within quotes because it is

already a string.

• The square brackets inside the eval command are used here to produce a

single string by concatenating three individual strings. The brackets are not

a part of the eval command. Note the blank spaces in the strings ’save ’

and ’ x y z’. These spaces are essential. Can you see why? [Hint: Try to

produce the string with and without the spaces.]

Similar to eval there is a function feval for evaluating functions. See discussion

on feval on page 109 in Section 4.2.2.
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3.4 A Special Note on Array Operations

Although we have already discussed array operations in Section 3.2.1 on page 73,

we highlight their importance by discussing them again here. Array operations

are a big strength of MATLAB; they get rid of at least one for loop from serial

computation. Most beginners have trouble with these operations.

Consider computing the product of data in two columns, x and y, where each

column has n entries. That is, x and y are column vectors of length n. We need to

compute xy for each entry. A natural way of computing this would be

for i=1:n

xy(i) = x(i)*y(i);

end

This is a serial computation in a loop. In fact, if you had the data on a piece

of paper in front of you, this is how you would calculate it by hand or by a regular

calculator. This is how you would calculate the product in any formal computer

language (possibly with some variations in the syntax of the commands). In MAT-

LAB, however, these three lines of code can be reduced to one line by using the

array operation on vectors x and y: xy=x.*y.

This is essentially what array operation is all about. The arrays considered here,

vectors x and y, can be matrices too. In case of matrices, you get rid of two for

loops—one for the row index and the other for the column index. Thus, the product

of two 2-D arrays A(n×n) and B(n×n), involving the double-looped computation

for i=1:n

for j=1:n

C(i,j) = A(i,j)*B(i,j);

end

end

can be replaced by, simply, C=A.*B. Please note that this is not a matrix product

where Cij =
∑
AikBkj . Here, we are computing Cij = AijBij , just an element-by-

element multiplication. As you already know, for matrix computations, you do not

have to worry about the little dot; if A and B are compatible, then C=A*B. Much

of the confusion regarding array operations arises from mixing matrix computa-

tions with array computations. Array computations are serial, element-by-element

computations of two arrays.

Most built-in functions in MATLAB accept arrays as arguments. So, a sinx or

sqrtx does not care whether x is a scalar, a 1-D array, or a 2-D array. However,

if x is an array, then computing sin x
x or x

√
x involves array operation on the two

arrays. Thus, we need to compute sin(x)./x and x.*sqrt(x) or x.^(3/2).

Addition or subtraction are, by definition, array operations and hence do not

need special attention. A scalar enjoys special status and operates on scalars or

arrays without any special treatment. Thus, for a scalar α, the computation αx is

alpha*x whether x is a scalar or an array.

We end this discussion with a table of examples of typical computations with

scalar and array arguments. In Table 3.1, variables x and y could be either a scalar
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or an array. Please look through each example and make sure that you understand

when and why array operators (arithmetic operators preceded by a dot) are used.

Computation Command with Command with
Scalar Arguments Vector Arguments

x+ 10 x+10 x+10

x/5 x/5 x/5

sinx sin(x) sin(x)√
x sqrt(x) sqrt(x)

1
x 1/x 1./x

x2 x^2 x.^2

xy x*y x.*y

xy x^y x.^y

sinx cosx sin(x)*cos(x) sin(x).*cos(x)

sin2 x sin(x)^2 sin(x).^2
ex√
x

exp(x)/sqrt(x) exp(x)./sqrt(x)

ex
2

exp(x^2) exp(x.^2)
1

x2+y2 1/(x^2+y^2) 1./(x.^2+y.^2)

Table 3.1: Examples of computation involving array operations.

3.4.1 Vectorization

You should take full advantage of array operations by vectorizing your code or

computation. By vectorization, we mean structuring your computation such that

you can use vector or array variables with array operators instead of serial, scalar

calculations. As an example, consider approximating the exponential function with

the first 10 terms in its series expansion, exp(x) ≈
∑10
k=1 x

k−1/(k − 1)!.

You can calculate exp(1) using this approximation without a loop in a vectorized

form:

x = 1; k = [1:10];

e1 = sum(x.^(k-1)./factorial(k-1));

Here, the expression x.^(k-1) creates a 1×10 array (a row vector) by computing

[x0 x1 x2 · · ·x9] corresponding to the vector k = [1 2 3 · · · 10], and the ex-

pression factorial(k-1), similarly, creates another 1× 10 array [0! 1! 2! · · · 9!].

Subsequently the two arrays are used for element by element division and then

all terms of the resulting array are summed up to get the answer. Note that we

could easily combine the two lines of code into a single line (although we do not

recommend hard coding numbers) as

e1 = sum(1.^([1:10]-1)./factorial([1:10]-1));

Vectorization is a very powerful tool in MATLAB programming and we strongly

recommend using it wherever possible. It accelerates computation besides reducing

the number of lines of code.
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3.5 Command-Line Functions

A mathematical function, such as f(x) or f(x, y), usually requires just the values of

the independent variables for computing the value of the function. We frequently

need to evaluate such functions in scientific calculations. One way to evaluate such

functions is by programming them in function files (see Section 2.5 on page 33 for

a quick tutorial or Section 4.2 on page 104 for details). However, there is a quicker

way of programming functions if they are not too complicated. This is done by

defining anonymous functions on the command line.

3.5.1 Anonymous functions

Anonymous functions are functions without names, created and referred to by their

handles. A function handle, created internally by MATLAB and stored in a user-

defined variable, is basically the identity of the function.

An anonymous function is created by the command

f = @(input list) mathematical expression

where f is the function handle. The input list can contain a single variable or several

variables separated by commas. After creating the function, you can use it with its

handle to evaluate the function or pass it as an argument to other functions.

Examples:

fx = @(x) x^2 - sin(x); creates a function f(x) = x2 − sinx,

fx(5) evaluates f(x) at x = 5,

fxy = @(x,y) x^2 + y^2; creates a function f(x, y) = x2 + y2,

fxy(2,3) evaluates f(x, y) at x = 2 and y = 3,

fx = @(x) x.^2 - sin(x) vectorizes the function f(x), and

x=[0:.1:pi/2]; plot(x,fx(x)) plots f(x) over 0 to π/2.

For a tutorial on anonymous functions, see Lesson 7 in Chapter 2 (pages 44–45

for several on-screen examples).

Workspace of anonymous functions

It is important to realize that the anonymous functions share the workspace in

which they are created. What that means is that these functions have access to

all variables that are there in the workspace. Therefore, you can use the available

variables in the definition of the function. Thus you can define

y = @f(x) a*sin(x) + b*cos(x),

where y = f(x) will need only x as an input for evaluating y, provided the variables

a and b already exist in the workspace. Unfortunately, the moment you create the

handle of the function (here, it is y), the current values of the variables a and b get

frozen in the definition of y. So, even if you change the values of a and b in the

workspace but do not re-create the function handle, the function will keep using

the old, frozen values of a and b to evaluate y(x) for any x you input:
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>> a=1;  b=2; 
>> y=@(x) a*sin(x)+b*cos(x);
>> y(pi/2)

ans =

    1.0000

>> a=5;
>> y(pi/2)

ans =

    1.0000

>> y=@(x) a*sin(x)+b*cos(x);
>> y(pi/2)

ans =

     5

Define variables a and b. Define an
anonymous function with handle y
that uses a and b. The current values
of a and b get embedded in y.

Even if you change the value of a,
any evaluation of y uses only the old
embedded value of a. To use the new 
value of a, you must re-create the 
handle y.

Anonymous functions with variable parameters

Several MATLAB functions require a user-defined function as an input argument.

Almost all such input functions need to confirm to strict requirements on the num-

ber of input and output arguments. For example, the zero finding function fzero

requires that the user provide a function, f(x), of a single variable as an input

argument for solving the equation f(x) = 0. On the other hand, the user may have

an equation such as f(x) ≡ ax2 + b log(x)− c = 0 and may be interested in knowing

how the solution changes as a, b, and c (problem parameters) change. So, the prob-

lem is how to create an anonymous function of one variable that fzero demands,

and yet be able to change the values of parameters. This task is accomplished by

nesting two anonymous functions as shown in below.

Note that y(x) is defined in terms of
f(a,b,c,x) after assigning values of
the parameters a, b, and c. In the 
for loop, new f is used each time.

sol is an array that contains the zero
of f corresponding to three sets of
parameters (a,b,c): (1,-2,5), (1,0,5),
and (1,2,5).

>> f = @(a,b,c,x) a*x.^2+b*log(x)-c;
>> a=1; b=[-2 0 2]; c=5;
>> for i=1:length(b)
    y = @(x) f(a,b(i),c,x); 
    sol(i)=fzero(y,2);
   end
>> sol

sol =

    2.6338    2.2361    1.9218

Using this technique of nesting anonymous functions, you can easily parameterize

them and use them with different parameter values.
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3.6 Using Built-in Functions and On-line Help For on-line help

type:

help helpMATLAB provides hundreds of built-in functions for numerical linear algebra, data

analysis, Fourier transforms, data interpolation and curve fitting, root-finding, nu-

merical solution of ordinary differential equations, numerical quadrature, sparse

matrix calculations, and general-purpose graphics. There is on-line help for all

built-in functions. With so many built-in functions, it is important to know how

to look for functions and how to learn to use them. There are several ways to get

help:

help the most direct on-line help: If you know the exact name of a function

or operator, you can get help on it by typing help functionname on the

command line. For example, typing help help provides help on the function

help itself.

lookfor the keyword search function: If you are looking for a function, use

lookfor keyword to get a list of functions with the string keyword in their de-

scription. For example, typing lookfor ’identity matrix’ lists functions

(there are two of them) that create identity matrices.

doc the web browser-based help in a separate window: MATLAB provid-

es extensive on-line documentation through this window. If you like to read

on-line documentation and get detailed help by clicking on hyperlinked text,

use this browser-based search-and-navigate facility. To activate this window,

click on the help icon wi? on the menu bar. Alternatively, type doc at the com-

mand prompt or select Documentation from the Help menu on the command

window menu bar.

docsearch the browser-based documentation search: Typing docsearch

topic brings up the documentation search result on the topic in a separate

browser window (if it is not already open).

As you work more in MATLAB, you will realize that the on-line help with the

command help and keyword search with lookfor are the easiest and fastest ways

to get help.

Typing help by itself brings out a list of categories (see Fig. 3.4) in which help

is organized. You can get help on one of these categories by typing help category.

For example, typing help elfun gives a list of elementary math functions with

a brief description of each function. Further help can be obtained on a function

because the exact name of the function is now known.

On the other hand, lookfor is a friendlier command. It lets you specify a de-

scriptive word about the function for which you need help. The following examples

take you through the process of looking for help, getting help on the exact function

that serves the purpose, and using the function in the correct way to get results.
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>> help

HELP topics:

matlab\general       -  General purpose commands.
matlab\ops           -  Operators and special characters.
matlab\lang          -  Programming language constructs.
matlab\elmat         -  Elementary matrices and matrix manipulation.
matlab\elfun         -  Elementary math functions.
matlab\specfun       -  Specialized math functions.
matlab\matfun        -  Matrix functions - numerical linear algebra.
matlab\datafun       -  Data analysis and Fourier transforms.
matlab\polyfun       -  Interpolation and polynomials.
matlab\funfun        -  Function functions and ODE solvers.
matlab\sparfun       -  Sparse matrices.
matlab\scribe        -  Annotation and Plot Editing.
matlab\graph2d       -  Two dimensional graphs.
matlab\graph3d       -  Three dimensional graphs.
matlab\specgraph     -  Specialized graphs.
matlab\graphics      -  Handle Graphics.
matlab\uitools       -  Graphical user interface tools.
matlab\strfun        -  Character strings.
matlab\imagesci      -  Image and scientific data input/output.
matlab\iofun         -  File input/output.
matlab\audiovideo    -  Audio and Video support.
matlab\timefun       -  Time and dates.
matlab\datatypes     -  Data types and structures.
matlab\verctrl       -  Version control.
matlab\codetools     -  Commands for creating and debugging code.
matlab\helptools     -  Help commands.
matlab\winfun        -  Windows Operating System Interface Files ...
matlab\demos         -  Examples and demonstrations.

>> help lang

Programming language constructs.
 
Control flow.

if          - Conditionally execute statements.
else        - Execute statement if previous IF condition failed.
elseif      - Execute if previous IF failed and condition is true.
end         - Terminate scope of control statements.
for         - Repeat statements a specific number of times.

help by itself lists the names of categories in
which the on-line help files are organized.

help category lists the functions in that 
category. Detailed help can then be obtained 
by typing: help functionname.

..

..

..

..

..

Figure 3.4: MATLAB help facility.



3.6 Using Built-in Functions and On-line Help 87

Caution: MATLAB’s help command is not forgiving of any typos or mis-

spellings, and hence you must know the exact command name.

3.6.1 Example 1: Finding the determinant of a matrix

We have a 10×10 matrix A (e.g., A=rand(10) ) and we want to find its determinant.

What we do not know is whether the command for determinant is det, deter, or

determinant. We can find the appropriate MATLAB command by searching with

the lookfor determinant command, as shown in Fig. 3.5. Then we can find the

exact syntax of the command or function. As is evident from the help on det in

Fig. 3.5, all we have to do is type det(A) to find the determinant of A.

>> help determinant
determinant.m not found.

Use the help browser Search tab to search the documentation or 

type “help help” for help command options such as help for methods.

>> lookfor determinant
det     - Determinant.

>> help det
DET    Determinant.
    DET(X) is the determinant of the square matrix X.

    Use COND instead of DET to test for matrix singularity.

    See also cond.

    Overloaded methods 
       help sym/det.m
    Reference page in Help browser
       doc det

To use help you must know the
exact name of the function.

To find the function, use the keyword
search command lookfor.

Figure 3.5: Example of how to find the function that computes the determinant of
a matrix.

3.6.2 Example 2: Finding eigenvalues and eigenvectors

Suppose we are interested in finding out the eigenvalues and eigenvectors of matrix

A, but we do not know what functions MATLAB provides for this purpose. Because

we do not know the exact name of the required function, our best bet to get help is to

try lookfor eigenvalue. Figure 3.6 shows MATLAB’s response to this command.
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A_eigenvalues    - A_eigenvalues         - rosser  
wilkinson        - Wilkinson's eigenvalue test matrix.
balance          - Diagonal scaling to improve eigenvalue ...
condeig          - Condition number with respect to eigen...
eig              - Eigenvalues and eigenvectors.
ordeig           - Eigenvalues of quasitriangular matrices.
ordqz            - Reorder eigenvalues in QZ factorization.
ordschur         - Reorder eigenvalues in Schur factorization.
polyeig          - Polynomial eigenvalue problem.
qz               - QZ factorization for generalized eigen...
eigs             - Find a few eigenvalues and eigenvectors ...
eigshow          - Graphical demonstration of eigenvalues ...
expmdemo3        - Matrix exponential via eigenvalues and ...
mat4bvp          - Find the fourth eigenvalue of the ...
drum1            - One of the two model files, which ...
drum2            - One of the two model files, which ...
pdeeig           - Solve eigenvalue PDE problem.
pdeeigx          - Exact calculation of eigenvalues for ...
sptarn           - Solve generalized sparse eigenvalue problem

>> help eig

 EIG    Eigenvalues and eigenvectors.
    E = EIG(X) is a vector containing the eigenvalues of
    a square matrix X.
 
    [V,D] = EIG(X) produces a diagonal matrix D of eigenvalues
    and a full matrix V whose columns are the corresponding
    eigenvectors so that X*V = V*D.
 
    [V,D] = EIG(X,'nobalance') performs the computation with
    balancing disabled, which sometimes gives more accurate
    results for certain problems with unusual scaling. If X is
    symmetric, EIG(X,'nobalance')is ignored since X is ...
 
    E = EIG(A,B) is a vector containing the generalized
    eigenvalues of square matrices A and B.
 
    [V,D] = EIG(A,B) produces a diagonal matrix D of 
    generalized eigenvalues and a full matrix V whose columns
    are the corresponding eigenvectors so that A*V = B*V*D.
 
    

lookfor  provides keyword search for 
help files containing the search string.

Detailed help can then be obtained on 
any of the listed files with help.

...
...

>> lookfor eigenvalue

Figure 3.6: Example of use of on-line help.
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As shown in Fig. 3.6, MATLAB lists all functions that have the string eigenvalue

either in their name or in the first line of their description. You can then browse

through the list, choose the function that seems closest to your needs, and ask for

further help on it. In Fig. 3.6, for example, we seek help on function eig. The

on-line help on eig tells us what this function does and how to use it.

Thus, if we are interested in just the eigenvalues of matrix A, we type eig(A) to

get the eigenvalues, but if we want to find both the eigenvalues and the eigenvectors

of A, we specify the output list explicitly and type [eigvec,eigval]=eig(A) (see

Fig. 3.7). The names of the output or the input variables can be anything we choose.

Although it’s obvious, we note that the list of the variables (input or output) must

be in the same order as specified by the function.

>> A = [5 -3  2; -3  8  4; 4  2  -9];
>> eig(A)

ans =

  -10.2206
    4.4246
    9.7960

>> [eigvec,eigval] = eig(A)

eigvec =

    0.1725    0.8706   -0.5375
    0.2382    0.3774    0.8429
   -0.9558    0.3156   -0.0247

eigval =

  -10.2206         0         0
         0    4.4246         0
         0         0    9.7960

Typing eig(A) without a list of 
outputs  gives the eigenvalues of A
in a column vector  stored in the 
default output variable ans.

Specifying an explicit  list of output 
variables [eigvec,eigval] gets
the eigenvectors of A in the matrix
eigvec and the eigenvalues of A on
the diagonal of the matrix eigval.

Figure 3.7: Examples of use of the function eig to find eigenvalues and eigenvectors
of a matrix.

Some comments on the help facility

• MATLAB is case-sensitive. All built-in functions in MATLAB use lowercase

letters for their names, yet the help on any function lists the function in

uppercase letters, as is evident from Figs. 3.5 and 3.6. For the first-time user,
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it may be frustrating to type the command exactly as shown by the help

facility, i.e., in uppercase, only to receive an error message from MATLAB.

• On-line help can be obtained by typing help commands on the command line,

as we have described in the previous section. This method is applicable on

all platforms that support MATLAB. In addition, on some computers such as

Macintosh and IBM compatibles with Windows, on-line help is also available

on the menu bar under Help. The menu bar item gives options of opening

Help Window, a point-and-click interactive help facility, or Helpdesk, a web

browser-based extensive help facility.

• Although lookfor is a good command to find help if you are uncertain about

the name of the function you want, it has an annoying drawback: It takes only

one string as an argument. So typing lookfor linear equations causes an

error (but lookfor ’linear equations’ is ok), while both lookfor linear

and lookfor equations do return useful help.

3.7 Saving and Loading Data
For on-line help

type:

help general

help save

help load

help open

There are many ways of saving and loading data in MATLAB. The most direct way

is to use the save and load commands. For a tutorial, see Lesson 8 in Chapter 2.

You can also save a session or part of a session, including data and commands, using

the diary command. We will describe save and load first.

3.7.1 Saving into and loading from the binary Mat-files

The save command can be used to save either the entire workspace or a few selected

variables in a file called Mat-file. Mat-files are written in binary format with full

16-bit precision. It is also possible to write data in Mat-files in 8-digit or 16-digit

ASCII format with optional arguments to the save command (see the on-line help).

Mat-files must always have a .mat extension. The data saved in these files can be

loaded into the MATLAB workspace by the load command. Examples of proper

usage of these commands are as follows:

save tubedata.mat x y saves variables x and y in the file tubedata.mat,
save newdata rx ry rz saves variables rx, ry, and rz in the file newdata.mat

(MATLAB automatically supplies the .mat
extension to the file name),

save xdata.dat x -ascii saves variable x in the file xdata.dat in 8-digit
ASCII format,

save saves the entire workspace in the file matlab.mat,
load tubedata loads the variables saved in the file tubedata.mat,
load loads the variables saved in the default file

matlab.mat.

ASCII datafiles can also be loaded into the MATLAB workspace with the load

command provided the datafile contains only a rectangular matrix of numbers. For

more information, see the on-line help on load. To read and write ASCII files with

specified delimiters (e.g., a tab), use dlmread and dlmwrite.
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You can also use cut-and-paste between the MATLAB command window and

other applications (such as Microsoft Excel) to import and export data.

3.7.2 Importing data files
For on-line help

type:

help importdata

help uiimport

help iofun

MATLAB has extensive support for importing different types of datafiles, both

through GUI and the command-line. This is one area where there has been contin-

uous improvement in MATLAB over the years.

The easiest way to import data from a file is to invoke the import window by

either (i) selecting Import Data from the Home tab of the MATLAB window (see

Fig. 3.8 or (ii) typing uiimport on the command line and then following the instruc-

tions on the screen. The Import Data utility does an excellent job of recognizing

most file formats, separating data into numeric data and text data, and loading

the data in the MATLAB workspace. Import wizard can load data from several

file formats used for text data (.txt, .csv), spreadsheet data (.xls, .xlsx, xltm, etc.),

movie data (almost all video formats, e.g., .avi, .mj2, .mpg, .mp4, .mov, etc.),

image data (almost all formats, e.g., .ti�, .jpeg, .jpg, .gif, .bmp, ,png, etc.), and

audio data (.wav, .au, .mp4, etc.). See on-line docmentation on Supported File

Formats for Import and Export for a list of readable file formats.

Home tab

Import Data utility

Figure 3.8: Click on Import Data in the Home tab to bring up the import data
window for selecting files, import options, etc.

Alternatively, you can also import data from a file using the built-in function

importdata(filename) from the command line. The file name must include the

file extension (e.g., .xlsx for Excel files) so that importdata can understand the file

format. See Lesson 8 in Chapter 2 for a tutorial.

There are also several low-level I/O functions that you can use in your programs

for reading and writing data from and to various file formats without involving on-

screen actions. For a brief description of these functions and some examples, please

see Section 4.3.7 on page 121.
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3.7.3 Recording a session with diary

An entire MATLAB session, or part of one, can be recorded in a user-editable file

by means of the diary command. A file name with any extension can be specified

as the output file. For example, typing diary session1.out opens a diary file

named session1.out. Everything in the command window, including user input,

MATLAB output, error messages, etc., that follows the diary command is recorded

in the file session1.out. Note that a figure does not appear in the command

window and is therefore not recorded in the diary. The recording is terminated by

the command diary off. The same diary file can be opened later during the same

session by typing diary on. This will append the subsequent part of the session

to the same file session1.out. All the figures in this book that show commands

typed in the command window and consequent MATLAB output were generated

with the diary command. Diary files may be opened and modified (say, to add

some comments and clarifications) with any standard text editor.

This is the simplest method of recording commands and their output (sans

figures), requires the least amount of effort, and produces a plain vanilla report.

For producing nicely formatted reports, including commands, comments, numeric

output, and figures, use the publisher (see Lesson 10 in Chapter 2, and Section 4.5

on page 135).

3.8 Plotting Simple Graphs

In modern times, any scientific computation is rarely complete without plotting

some graph. So, after all the hard work on interactive computation in this chapter,

let us see how to plot simple graphs quickly. The first example includes plotting a

graph and saving it as a color PDF file.

As mentioned in the introduction, the plots in MATLAB appear in the graphics

window. MATLAB provides very good facilities for both 2-D and 3-D graphics.

The commands to produce simple plots are surprisingly simple. For complicated

graphics and special effects there are a lot of built-in functions that enable the user

to manipulate the graphics window in many ways. Unfortunately, the more control

you want the more complicated it gets. We describe the graphics facility in more

detail in Chapter 5.

The most direct command to produce a graph in 2-D is the plot command. If

a variable ydata has n values corresponding to n values of variable xdata, then

plot(xdata,ydata) produces a plot with xdata on the horizontal axis and ydata

on the vertical axis. To produce overlay plots, you can specify any number of pairs

of vectors as the argument of the plot command. We discuss more of this, and

much more on other aspects of plotting, in Chapter 5. Figure 3.9 shows an example

of plotting a simple graph of f(t) = et/10 sin(t), 0 ≤ t ≤ 20. This function could

also be plotted using fplot, a command for plotting functions of a single variable.

The most important thing to remember about the plot command is that the vector

inputs for the x-axis data and the y-axis data must be of the same length. Thus, in
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>> x = 0: .1: 20;
>> y = exp(0.1*x).*sin(x);
>> plot(x,y)
>> xlabel('Time (t) in Seconds')
>> ylabel('The Response Amplitude in mm')
>> title('A Simple 2-D Plot')
>> print resp_amp.pdf -dpdf

% create vector x
% calculate y
% plot x vs. y
% label x-axis
% label y-axis
% put a title
% save the graph as
% a color pdf in the 
% file resp_amp.pdf
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Figure 3.9: Example of a simple 2-D plot of function f(t) = et/10 sin(t).

the command plot(x1,y1,x2,y2), x1 and y1 must have the same length, x2 and

y2 must have the same length, but x1 and x2 may have different lengths.

The following are several other plotting functions that are easy to use and quickly

produce plots.

fplot It takes the function of a single variable and the limits of the axes as the

input and produces a plot of the function. The simplest syntax (there is more

to it, see the on-line help) is

fplot(’function’,[xmin xmax])

Example: The following commands plot f(x) = e−x/10 sin(x) for x between 0

and 20 and produce the plot shown in Fig. 3.10.

fplot(’exp(-.1*x).*sin(x)’,[0, 20])

xlabel(’x’),ylabel(’f(x) = e^{x/10} sin(x)’)

title(’A function plotted with fplot’)

This function can take optional arguments that specify line-type (line-style,

color, and marker), tolerance for the position of data points, and minimum

number of points to be used in creating the plot. The optional arguments can
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A function plotted with fplot

Figure 3.10: Example of plotting a function with fplot.

be in any order. Thus, we get a different look for the graph generated with

the following commands (see Fig. 3.11):

y = @(x) exp(-.1*x).*sin(x); % use an anonymous function

fplot(y,[0, 20],’r:o’); % use dotted red line with marker ’o’

xlabel(’x’), ylabel(’y’)

title(’e^{x/10} sin(x)’)
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Figure 3.11: Example of plotting a function with fplot, specifying line-style and
color.

In MATLAB, there is a suite of easy function plotters (their names begin with

the prefix ez) that produce 2-D and 3-D plots and contour plots. These functions

require the user to specify the function to be plotted as an input argument. The

function to be plotted can be specified as a character string or as an anonymous

function. There is a default domain for each ez plotter but you have the option

of overwriting the default domain. These plotting functions are really easy to use.

Take a quick look at the following examples.
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ezplot It takes the function of a single variable and the limits of the axes as the

input and produces a plot of the function. The syntax is

ezplot(’function’,[xmin, xmax])

where specification of the domain xmin < x < xmax is optional. The default

domain is −2π < x < 2π.

Example: The following command plots f(x) = e−x/10 cos(x) for x between 0

and 20 and produces the plot shown in Fig. 3.12.

ezplot(’exp(-.1*x).*cos(x)’, [0, 20])

Alternatively, the commands F=’exp(-.1*x).*cos(x)’; ezplot(F,[0,20])

and F=@(x) exp(-.1*x).*cos(x); ezplot(F,[0,20]) will produce the same

result. You can also use ezplot with implicit functions (i.e., you do not have

an explicit formula for the function as y = F (x), but you have an expression

such as x2y + sin(xy) = 0 or F (x, y) = 0). In addition, ezplot can also plot

parametric curves given by x(t) and y(t), where tmin < t < tmax. See on-line

help on ezplot.
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Figure 3.12: Example of plotting a function with ezplot.

ezpolar This is the polar version of ezplot. It takes r(θ) as the input argument.

The default domain is 0 < θ < 2π.

Example: The following commands plot r(θ) = 1 + 2 sin2(2θ) for 0 < θ < 2π

and produce the plot shown in Fig. 3.13.

r =@(t) 1+2*(sin(2*t)).^2; ezpolar(r)

ezplot3 takes x(t), y(t), and z(t) as input arguments to plot 3-D parametric

curves. The default domain is 0 < t < 2π.

Example: The following commands plot x(t) = t cos(3πt), y(t) = t sin(3πt),

and z(t) = t over the default domain. The plot produced is shown in Fig. 3.14.

x = ’t.*cos(3*pi*t)’; y = ’t.*sin(3*pi*t)’; z = ’t’;

ezplot3(x,y,z)

Note that we can also specify x, y, and z as inline functions (see the next

example).
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Figure 3.13: Polar plot of r(θ) = 1 + 2 sin2(2θ) with ezpolar.
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Figure 3.14: Plot of a 3-D parametric space curve with ezplot3.

ezcontour Contour plots are a breeze with this function. Just specify Z =

F (x, y) as the input argument and specify the domain for x and y if desired

(other than the default −2π < x < 2π and −2π < y < 2π).

Example: Let us plot the contours of Z = cosx cos y exp(−
√

(x2 + y2)/4)

over the default domain.

Z = @(x,y) cos(x).*cos(y).*exp(-sqrt((x.^2+y.^2)/4));

ezcontour(Z)

The plot produced is shown in Fig. 3.15(a).

ezcontourf This is just a variant of ezcontour. It produces filled contours.

The syntax is the same as for ezcontour. As an example, let us take the

same function as in ezcontour and change the default domain to −5 < x < 5

and −5 < y < 5: ezcontourf(Z, [-5,5]). The plot produced is shown in

Fig. 3.15(b). For different ranges of x and y, the domain can be specified by

a 1-by-4 vector, [xmin, xmax, ymin, ymax].
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Figure 3.15: Contour plots of Z = cosx cos y exp(−
√

(x2 + y2)/4) with (a)
ezcontour and (b) ezcontourf.

ezsurf To produce stunning surface plots in 3-D, all you need to do is specify

the function Z = F (x, y) as an input argument of ezsurf and specify the

domain of the function if you need to.

Example: Here is an example of the surface plot for Z = −5/(1 + x2 + y2)

over the domain |x| < 3 and |y| < 3.

Z = @(x,y) -5./(1+x.^2+y.^2); ezsurf(Z,[-3,3,-3,3])

The plot produced is similar to the one shown in Fig. 3.16 with no contours.

ezsurfc An even prettier looking variant of ezsurf is ezsurfc, which combines

the surface plot with its contour plot. See Fig. 3.16, which is produced with

the command ezsurfc(Z,[-3,3]) for the same function Z(x, y), as specified

in the preceding ezsurf example.

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1

2

3

-5

-4

-3

-2

-1

0

x
y

Figure 3.16: 3-D surface plot of Z = −5/(1 + x2 + y2) with ezsurfc.

There are two more functions in the ez stable, ezmesh and ezmeshc, that are

used for 3-D plotting. These functions work exactly like the surface plotting

functions except that they create the 3-D graphs with wireframe meshes rather

than surface patches.
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3.9 Fun with Functions Using funtool

In the last section, we saw how easy it was to visualize functions with the ez-family

of plotting functions. Well, there is another tool in MATLAB that lets you have

plenty of fun with functions of a single variable:

funtool : Typing funtool at the command prompt brings up a function-calculator

shown in Fig. 3.17. The working of the calculator is self-evident. You can type

analytical expressions of two functions, f(x) and g(x), see their plots instantly,

and perform several operations on them, such as addition, multiplication, divi-

sion, differentiation, integration, etc., and see the result graphically by clicking

on appropriate buttons. This is a good utility for developing certain intuition

about functions of single variables.

f(x) g(x)

Figure 3.17: This function calculator is invoked by the command funtool typed at
the command prompt (i.e., � funtool). The top two windows plot f(x) and g(x)
as well as functions resulting from operations on these functions corresponding to
the buttons you click on the calculator.

While funtool is a fun tool to graph functions, it is quite restrictive. It can

only deal with functions of single variables and accepts only real valued functions.

It would be nice if the graphics windows had grids so that one could easily find the

origin and spot important transition points readily.
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EXERCISES

1. See the structure of a matrix: Create a 20 × 20 matrix with the command
A=ones(20). Now replace the 10 × 10 submatrix between rows 6:15 and columns
6:15 with zeros. See the structure of the matrix (in terms of nonzero entries with
the command spy(A). Set the 5× 5 submatrices in the top right corner and bottom
left corner to zeros and see the structure again.

2. Create a symmetric matrix: Create an upper triangular matrix with the follow-
ing command:

A = diag(1:6) + diag(7:11,1) + diag(12:15,2).

Make sure you understand how this command works (see the on-line help on diag

if required). Now use the upper off-diagonal terms of A to make A a symmetric
matrix with the following command:

A = A + triu(A,1)’.

This is a somewhat loaded command. It takes the upper triangular part of A above
the main diagonal, flips it (transposes), and adds to the original matrix A, thus
creating a symmetric matrix A. See the on-line help on triu.

3. Do some cool operations: Create a 10 × 10 random matrix with the command
A=rand(10). Now do the following operations.

• Multiply all elements by 100 and then round off all elements of the matrix to
integers with the command A=fix(A).

• Replace all elements of A < 10 with zeros.

• Replace all elements of A > 90 with infinity (inf).

• Extract all 30 ≤ aij ≤ 50 in a vector b, that is, find all elements of A that are
between 30 and 50 and put them in a vector b.

4. How about some fun with plotting?

• Plot the parametric curve x(t) = t, y(t) = e−t/2 sin t for 0 < t < π/2 using
ezplot.

• Plot the cardioid r(θ) = 1 + cos θ for 0 < θ < 2π using ezpolar.

• Plot the contours of x2 + sin(xy) + y2 = 0 using ezcontour over the domain
−π/2 < x < π/2, −π/2 < y < π/2.

• Create a surface plot along with contours of the function H(x, y) = x2

2
+ (1−

cos y) for −π < x < π, −2 < y < 2.

5. Automated saving and loading using multiple files: (See Section 3.3.2)

• Use a loop for generating magic matrices of size 20, 25, 30, 35, 40, 45, and 50.

• In the same loop, generate a file name magicmatrix i where i takes the value
of 1, 2, . . ., 7, as the loop index advances.

• Use save and eval to save the generated magic matrix in the corresponding
file, e.g., magic(20) should be saved in magicmatrix 1 and magic(35) should
be saved in magicmatrix 4.

• Clear the workspace of all variables. Use load and eval in another loop to
load each of the seven files you just saved and to image the loaded matrix (use
image(A) to image matrix A) in the figure window figure(i) where i is the
loop index. [You could even save the figures in automatically generated files.]





4.
Programming
in MATLAB:
Scripts and
Functions

A distinguishing feature of MATLAB is its ease of extendability through user-

written programs. MATLAB provides its own language, which incorporates many
For on-line help

type:

help langfeatures from C. In some regards, it is a higher-level language than most com-

mon programming languages, such as Pascal, Fortran, and C, meaning that you

will spend less time worrying about formalisms and syntax. For the most part,

MATLAB’s language feels somewhat natural.

In MATLAB you write your programs in M-files. M-files are ordinary ASCII

text files written in MATLAB’s language. They are called M-files because they must

have a .m at the end of their name (like myfunction.m). M-files can be created

using any editor or word processing application.

There are two types of M-files—script files and function files. We will now

discuss their purpose and syntax.

4.1 Script Files

A script file is an M-file with a set of valid MATLAB commands in it. A script file is

executed by typing the name of the file (without the .m extension) on the command

line. It is equivalent to typing all the commands stored in the script file, one by

one, at the MATLAB prompt. Naturally, script files work on global variables, that

is, variables currently present in the workspace. Results obtained from executing

script files are left in the workspace.
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A script file may contain any number of commands, including those that call

built-in functions or functions written by you. Script files are useful when you have

to repeat a set of commands several times. Here is an example.

Example of a script file: Let us write a script file to solve the following system

of linear equations1: 5 2r r
3 6 2r − 1
2 r − 1 3r

 x1

x2

x3

 =

 2
3
5

 (4.1)

or Ax = b. Clearly, A depends on the parameter r. We want to find the solution

of the equation for various values of the parameter r. We also want to find, say, the

determinant of matrix A in each case. Let us write a set of MATLAB commands

that do the job and store these commands in a file called solvex.m. How you create

this file, write the commands in it, and save the file depends on the computer you

are using. In any case, you are creating a file called solvex.m, which will be saved

on some disk drive in some directory (or folder).

%----------- This is the script file ‘solvex.m’ ------------

% It solves equation (4.1) for x and also calculates det(A).

A = [5 2*r r; 3 6 2*r-1; 2 r-1 3*r]; % create matrix A

b = [2;3;5]; % create vector b

det_A = det(A) % find the determinant

x = A\b % find x

In this example, we have not put a semicolon at the end of the last two com-

mands. Therefore, the results of these commands will be displayed on the screen

when we execute the script file. The results will be stored in variables det A and x,

and these will be left in the workspace.

Let us now execute the script in MATLAB.

>> r = 1;
>> solvex               

>> who               

det_A =

      64
x = 
   -0.0312
    0.2344
    1.6875

This is the output. The values of the

Check the variables in the workspace.

variables det_A and x appear on
the screen because there is no semi-
colon at the end of the corresponding
lines in the script file.

% specify a value of r
% clear the workspace

% execute the script file solvex.m

>> clear all

1If you are not familiar with matrix equations, see Section 6.1.1 on page 199.
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You may notice that the value of r is assigned outside the script file and yet

solvex picks up this value and computes A. This is because all the variables in the

MATLAB workspace are available to script files, and all the variables in a script file

are left in the MATLAB workspace. Even though the output of solvex is only det A

and x, A and b are also in your workspace, as you will see as a result of the last

command who. So, if you want to do a big set of computations but in the end you

want only a couple of variables as the output, a script file is not the right choice.

What you need in this case is a function file.

Caution:
• NEVER name a script file the same as the name of a variable it computes.

When MATLAB looks for a name, it first searches the list of variables in the

workspace. If a variable of the same name as the script file exists, MATLAB

will never be able to access the script file. Thus, if you execute a script

file xdot.m that computes a variable xdot, then after the first execution the

variable xdot exists in the MATLAB workspace. Now if you change something

in the script file and execute it again, all you get is the old value of xdot! Your

changed script file is not executed because it cannot be accessed as long as

the variable xdot exists in the workspace. Fortunately, MATLAB detects this

problem and gives an error message if the script file contains a variable with

the same name as that of the script file.

• The name of a script file must begin with a letter. The rest of the characters

may include digits and the underscore character. You may give long names

but MATLAB will take only the first 19 characters. You may not use any

periods in the name other than the last one in .m. Thus, names such as

project 23C.m, cee213 hw5 1.m, and MyHeartThrobsPro�le.m are fine, but

project.23C.m and cee213 hw5.1.m are not valid names.

• Be careful with variable names while working with script files, because all

variables generated by a script file are left in the workspace, unless you clear

them. Avoid name clashes with built-in functions. It is a good idea to first

check if a function or script file of the proposed name already exists. You can

do this with the command exist(’proposed name’), which returns zero if

nothing with the name proposed name exists.

• You can create and test parts of a script without running the entire script

by dividing the script into cells (computational units consisting of a few com-

mands) and then running one cell script at a time from the cell execution

options in the toolbar of the MATLAB editor window (see Section 4.5 on

page 135 for a discussion of cell scripts). This is a MATLAB feature (intro-

duced in MATLAB 7). The option to execute and test one cell at a time

provides an excellent tool for developing long and complex programs without

learning special debugging tools. The script cells we are talking about here

should not be confused with cells that are one of the data types in MATLAB,

discussed in Section 4.4.3.
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4.2 Function Files

A function file is also an M-file, like a script file, except that the variables in a

function file are all local. Function files are like programs or subroutines in Fortran,

procedures in Pascal, and functions in C. Once you get to know MATLAB well, this

is where you are likely to spend most of your time—writing and refining your own

function files.

A function file begins with a function definition line, which has a well-defined

list of inputs and outputs. Without this line, the file becomes a script file. The

syntax of the function definition line is as follows:

function [output variables] = function name(input variables);

where the function name must be the same as the file name (without the .m exten-

sion) in which the function is written. For example, if the name of the function is

projectile it must be written and saved in a file with the name projectile.m. The

function definition line may look slightly different, depending on whether there is

no output, a single output, or multiple output.

Examples:

Function Definition Line File Name

function [rho,H,F] = motion(x,y,t); motion.m
function [theta] = angleTH(x,y); angleTH.m
function theta = THETA(x,y,z); THETA.m
function [ ] = circle(r); circle.m
function circle(r); circle.m

Caution: The first word in the function definition line, function, must be typed

in lowercase. A common mistake is to type it as Function.

Anatomy of a function file

function [xout,yout] = funcname(xin,yin);
% add 1 line description of function here
% write on-line help comments here
% include your name and date

x = blah;
:
y = moreblah;

output list input list
function namefunction 

definition line

comment
lines used
by on-line
help

body of the
function

H1 line
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Features

• Comment lines start with a % sign and may be put anywhere. Anything after

a % in a line is ignored by MATLAB as a nonexecutable statement.

• All comment lines immediately following the function definition line are dis-

played by MATLAB if help is sought on the function. The very first comment

line immediately following the definition line is called the “H1” line. An H1

line, if present, is automatically cataloged in the contents.m file of the direc-

tory in which the file resides. This allows the line to be referenced by the

lookfor command. A word of caution is in order: any blanks before the %

sign in the first comment line disqualify it from becoming an H1 line. Welcome

to the idiosyncrasies of MATLAB!

• A single-output variable is not required to be enclosed in square brackets in

the function definition line, but multiple output variables must be enclosed

within [ ]. When there is no output variable present, the brackets as well as

the equal sign may be omitted (see previous examples).

• Input variable names given in the function definition line are local to the

function, so other variable names or values can be used in the function call.

The name of another function can also be passed as an input variable. No

special treatment is required for the function names as input variables in the

function definition line. However, when the function is executed, the name of

the input function must be passed as a character string, i.e., enclosed within

two single right quotes (see example in the next section).

4.2.1 Executing a function

There are two ways a function can be executed, whether it is built-in or user-written:

1. With explicit output: This is the full syntax of calling a function. Both

the output and input list are specified in the call. For example, if the function

definition line of a function reads

function [rho,H,F] = motion(x,y,t);

then all the following commands represent legal call (execution) statements:

• [r,angmom,force]=motion(xt,yt,time); The input variables xt, yt,

and time must be defined before executing this command.

• [r,h,f]=motion(rx,ry,[0:100]); The input variables rx and ry

must be defined beforehand; the third input variable t is specified in

the call statement.

• [r,h,f]=motion(2,3.5,0.001); All input values are specified in the

call statement.

• [radius,h]=motion(rx,ry); Call with partial list of input and out-

put. The third input variable must be assigned a default value inside the

function if it is required in calculations. The output corresponds to the

first two elements of the output list of motion.
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2. Without any output: The output list can be omitted entirely if the com-

puted quantities are not of any interest. This might be the case when the

function displays the desired result graphically. To execute the function this

way, just type the name of the function with the input list. For example,

motion(xt,yt,time); will execute the function motion without generating

any explicit output, provided that xt, yt, and time are defined. If the semi-

colon at the end of the call statement is omitted, the first output variable in

the output list of the function is displayed in the default variable ans.

A function can be written to accept a partial list of inputs if some default values

of the other unspecified inputs are defined inside the function. This kind of input

list manipulation can be done with the built-in function nargin, which stands for

number-of-arguments-in. Similarly, the list of outputs can be manipulated with

the built-in function nargout. See the on-line help on nargin and nargout. For an

example of how to use them, look at the function fplot by typing type fplot.m.

Example of a simple function file

Let us write a function file to solve the same system of linear equations that we

solved in Section 4.1 using a script file. This time, we will make r an input to the

function and det A and x will be the output. Let us call this function solvexf. As

a rule, it must be saved in a file called solvexf.m.

function [det_A, x] = solvexf(r);

% SOLVEXF solves a 3X3 matrix equation with parameter r

% This is the function file ‘solvexf.m’

% To call this function, type:

% [det_A,x] = solvexf(r);

% r is the input and det_A and x are output.

%_____________________________________________________

A = [5 2*r r; 3 6 2*r-1; 2 r-1 3*r]; % create matrix A

b = [2;3;5]; % create vector b

det_A = det(A); % find the determinant

x = A\b; % find x.

Now r, x, and det A are all local variables. Therefore, any other variable names

may be used in their places in the function call statement. Let us execute this

function in MATLAB.
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>> [

>> clear all

detA, y] = solvexf(1); 

>> detA               

detA =
     64

>> y

>> who

Your variables are:

detA  y  

y = 
   -0.0312
    0.2344
    1.6875

% take r=1 and execute solvexf.m

% display the value of detA

% display the value of y

Note that only detA and y are in 
the workspace; no A, b, or x.

Values of detA and y will be 
automatically displayed if the semi-
colon at the end of the function
command is omitted.

After execution of a function, the only variables left in the workspace by the

function will be the variables in the output list. This gives us more control over

input and output than we can get with script files. We can also include error checks

and messages inside the function. For example, we could modify the preceding

function to check if matrix A is empty or not and display an appropriate message

before solving the system by changing the last line to

if isempty(A) % if matrix A is empty

disp(’Matrix A is empty’);

else % if A is not empty

x = A\b; % find x

end % end of if statement.

For a description of if-elseif-else branching and other control-flow com-

mands, see Section 4.3.4 on page 116.

4.2.2 More on functions

By now the difference between scripts and functions should be clear to you. The

variables inside a function are local and are erased after execution of the function.

But the variables inside a script file are left in the MATLAB workspace after exe-

cution of the script. Functions can have arguments, script files do not. What about

functions inside another function? Are they local? How are they executed? Can a

function be passed as an input variable to another function? Now we address these

questions.
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Executing a function inside another function

Usually, it is a straightforward process, so much so that you do not have to pay any

special attention to it. In the function solvexf, we used a built-in function, det,

to calculate the determinant of A. We used the function just the way we would

use it at the MATLAB prompt or in a script file. This is true for all functions,

built-in or user-written. The story is different only when you want the function

name to be dynamic, that is, if the function to be executed inside may be different

with different executions of the calling function.2 In such cases, the actual name of

the function is passed to the calling function through the input list and a dummy

name is used inside the calling function. The mechanism of passing the function

name and evaluating it inside the calling function is quite different from that for a

variable. We explain it below.

A function in the input list

When a function needs to be passed in the input list of another function, the name

of the function to be passed must appear as a character string in the input list. For

example, the built-in function fzero finds a zero of a user-supplied function of a

single variable (see Section 6.2, page 207, for more details). The call syntax of the

function is fzero(f,x) where f is the name of the function or a function handle

and x is an initial guess. There are several ways in which we can code the function

f and pass it in the input list of fzero. We describe a few common ways of doing

so on an example function:

f(r) = r3 − 32r2 + (r − 22)r + 100.

Use anonymous function: We can make f(r) be an anonymous function (see

Section 3.5.1 on page 83 for a detailed discussion) and pass its name to fzero

as follows:

fr = @(r) r^3 - 32*r^2 + (r-22)*r + 100;

r0 = fzero(fr,5);

Use function file: We can code f(r) in a function file called funr.m as follows:

function f = funr(r);

% FUNR evaluates function f = r^3 -32 r^2+(r-22)r+100.

f = r^3 - 32*r^2 + (r-22)*r + 100;

Now we may call fzero with the statement:

r0 = fzero(’funr’,5)

passing funr in the input list. Note the single quotes around the name.

Use function handle: A function handle is a convenient function identifier (a

variable) created by the user. It is created with the @ symbol. We can use

it for any function—built-in or a user-written M-file function (but not an

inline function). As examples, let us do the same thing with funr as we did

previously but with a function handle.

For on-line help

type:

help

function handle
2A function that uses another function inside its body is called a calling function. For example,

solvexf in the example earlier is a calling function for the function det.
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f1 = @funr % create function handle f1 for ‘funr’

r1 = fzero(f1,5); % use function handle

Or, alternatively, r1 = fzero(@funr,5).

Of course, anonymous functions, by definition, are created with explicit function

handles and hence can be used directly in the input list.

Evaluating a function with feval or function handle

Functions can be evaluated indirectly (by reference) either by using their handle or

using the function feval. Evaluating a function with its handle is straightforward

as discussed earlier. It is just like using the actual functions except that we use the

handle in place of the name of the function. For example, to evaluate the function

funr created previously, we can use its function handle as follows:

hfun = @funr % hfun is made the handle of funr

f = hfun(5) % evaluate funr at r = 5

The function feval evaluates a function whose name is specified as a string in

the list of input variables. For example,
For on-line help

type:

help feval[y, z] = feval(’Hfunction’, x, t);

evaluates the function Hfunction on the input variables x and t and returns the

output in y and z. It is equivalent to typing [y,z]=Hfunction (x,t). So why

would you ever evaluate a function using feval when you can evaluate the func-

tion directly? The most common use is when you want to evaluate functions with

different names but use the same input list. Consider the following situation. You

want to evaluate any given function of x and y at the origin x = 0, y = 0. You can

write a script file with one command in it:

value = feval(’funxy’, 0, 0); .

This command is the same as writing value=funxy(0,0). Now suppose Harry has

a function z(x, y) = sinxy + xy2, programmed as

function z = harrysf(x,y)

% function to evaluate z(x,y)

z = sin(x*y) + x*y^2;

and Kelly has a function h(x, y) = 20xy − 3y3 − 2x3 + 10, programmed as

function h = kellysf(x,y)

% function to evaluate h(x,y)

h = 20*x*y - 3*y^3 - 2*x^3 + 10;

Both functions can be evaluated with your script file by changing the name

funxy to harrysf and kellysf, respectively. The point here is that the command

in your script file takes dynamic filenames.

Of course, the same can be done using a function handle too. Let us say the

function handle is hf. Then the function evaluation at x = 0 and y = 0 is done

with value = hf(0,0). To evaluate harrysf, we assign hf = @harrysf, and to

evaluate kellysf, we assign hf = @kellysf before using value = hf(0,0).
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The indirect evaluation of a function (by reference) becomes essential when a

function is passed as an input variable to another function. In such cases, the

function passed as the input variable must be evaluated using either its function

handle or feval. For example, the ODE solvers ode23 and ode45 take user-defined

functions as inputs, in which the user specifies the differential equation. Inside

ode23 and ode45, the user-defined function is evaluated at the current time t and

the current value of x to compute the derivative ẋ using feval. ode23 and ode45

are M-files, which you can copy and edit. Make a printout of one of them and see

how it uses feval and function handle.

Writing good functions

Writing functions in MATLAB is easier than writing functions in most standard

programming languages, or, for that matter, in most of the software packages that

support their own programming environment. However, writing efficient and elegant

functions is an art that comes only through experience. For beginners, keeping the

following points in mind helps.

• Pseudocode: Before you begin writing a function, write a pseudocode. It is

essentially the entire function coded in English (as opposed to the program-

ming language) with clear control flow. Think about the logical structure and

sequence of computations, define the input and output variables, and write the

function in plain words. Then begin the translation into MATLAB language.

• Readability: Select a sensible name for the function and the variables inside

it. Write enough comments in the body of the function. Design and write

helpful comments for on-line help (the comment lines in the beginning of the

function). Make sure you include the syntax of how to use the function.

• Modularity: Keep your functions modular, that is, break big computations

into smaller chunks and write separate functions for them. Keep your func-

tions small in length.

• Robustness: Provide checks for errors and exit with helpful error messages.

• Expandability: Leave room for growth. For example, if you are writing a

function with scalar variables but think you may use vector variables later,

write the function with this in mind. Avoid hard-coding actual numbers.

4.2.3 MATLAB code analyzer

When you write a program in MATLAB, and create a script or a function, you want

to make sure that your program

• uses correct syntax for each statement,

• has a proper function definition line if it is a function,

• uses appropriate built-in functions, and

• contains no unresolvable references.



4.2 Function Files 111

Even though it is relatively easy to take care of these things if a function is just

a few lines long, it becomes harder as the length of the code increases. It used to

be that the only way you found your mistakes was when you executed the function

and got error messages. MATLAB provides an assistant to help you in this task.

It is called the Automatic Code Analyzer (and offers automatic corrections too). It

is an excellent facility for helping you in developing error free codes. There are two

basic ways in which you can use the code analyzer:

1. On fresh code as you write it: When you open a new M-file in the

MATLAB editor, the code analyzer is pressed into service automatically. As

you write the lines of code, the code analyzer, as a nice assistant, starts

working quietly, watching over your shoulders, and lists its objections politely

and symbolically in the right-hand margin of the editor window. There is a

colored small square on the top (in the right margin) that indicates the level

of analyzer’s happiness with your code—a red-faced square indicates error, a

green-faced square is a signal to march on. Below the square, there may be

orange- or red-colored lines corresponding to a particular line of code. Place

your cursor on these colored lines (or, alternatively, on the underlined items

in your code) one by one to see the message your assistant has left for you

while it checked the line. Orange lines contain advisories (warnings) but red

lines must necessarily be attended to. Many a times, fixing one error gets rid

of many other warning lines too.

2. On existing M-files: You can open an existing M-file in the editor and see

code analyzer’s messages just the way you would on a new M-file. Alterna-

tively, you can run the analyzer on the whole directory and produce reports for

each M-file in the directory with a single click—go to the main window, make

sure that the HOME tab is on display above the Command Window, look in

the code section of the tab, and click on the top option, Analyze Code. A new

window opens up and you are presented with the code analyzer’s report for

all M-files in the current directory. There is a lot more you can do, customize

reports, set your analyzer’s preferences, etc. See the on-line documentation

to learn more if you wish.

MATLAB’s automatic code analyzer is a friendly assistant. Listen to its advice

and make sure that it is happy (green-faced square) before you close your M-file.

4.2.4 Subfunctions

MATLAB allows several functions to be written in a single file. Although this facil-

ity is useful from a file organization point of view, it comes with severe limitations.

All functions written below the first function in the file are treated as subfunctions

and are NOT available to the outside world. This means that whereas the first

function can access all its subfunctions, and the subfunctions written in the same

file can also access each other, functions outside this file cannot access these sub-

functions. You can, however, get on-line help on a subfunction by typing

help m filename>subfunction name .
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4.2.5 Nested functions

Nested functions are functions written inside a main function, just like subfunctions

but with the following important distinctions:

• Each nested function must be terminated by an end statement. For example:

function [x, y] = main_fun(t, a, b)

:

function x = nested_fun1(a,b)

:

end

function y = nested_fun2(t)

:

end

end

Here, nested fun1 and nested fun2 are nested functions inside the main

function main fun. Note that the main function (whose name must be the

same as the M-file name) must be terminated by an end too.

• All nested functions share the workspace of functions in which they are nested.

Thus nested fun1 and main fun share their workspace variables and so do

nested fun2 and main fun, but nested fun1 and nested fun2 do not share

workspace variables. This facility of sharing workspace makes it easy for the

nested functions to access each other’s variables and their values without any

explicit declaration (e.g., global) or passing them in the input list.

Functions can be nested to any level; that is, nested functions can also have their

own nested functions. Of course, nested functions are not visible or accessible from

outside the main function. They can, however, be made accessible from outside by

creating their explicit function handles (see on-line help on nested functions in the

help browser).

4.2.6 Compiled (parsed) functions: The p-code

When a function is executed in MATLAB, each command in the function is first

interpreted by MATLAB and then translated into the lower-level language. This

process is called parsing. It is not exactly like compiling a function in C or Fortran

but, superficially, it is a similar process. MATLAB allows you to save a parsed

function for later use. To parse a function called projectile that exists in an

M-file called projectile.m, type the command

pcode projectile

This command generates a parsed function that is saved in a file named projectile.p.

Next time you call the function projectile, MATLAB directly executes the preparsed

function.

For all moderate-size functions, saving them as parsed functions does not save

as much time during execution as you would think. The MATLAB parser is quick
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enough to reduce the overhead on parsing to a negligible fraction. The best use

of p-codes, perhaps, is in protecting your proprietary rights when you send your

functions to other people. When you send p-codes, the recipients can execute them

but they cannot modify them.

4.2.7 The profiler For on-line help

type:

help profileTo evaluate the performance of functions, MATLAB provides a tool called profiler.

The profiler keeps track of the time spent on each line of the function (in units of

0.001 seconds) as the function is executed. The profile report shows how much time

was spent on which function and which line. The report can be generated in various

forms and levels of detail, depending on the options used.

The profiler is surprisingly easy to use. Let us see a pseudoexample. To profile

the function solvexf, type the following commands:

profile on % turn the profiler on

[d,x] = solvexf(3) % execute the function solvexf

profile viewer % invoke the profile viewer to see results

profile off % thank you, bye profiler

The profile viewer brings up a pop-up window that shows the report in HTML

format. Locate your function in the list and click on it to see a line-by-line report

on your function.

Note: The profiler implemented in MATLAB is fairly advanced. You can use it to

produce and display various statistics about your programs, including the functions

(written by you or built-in) that your program calls. This is not something you

should spend your time on if you are a beginner.

4.3 Language-specific Features For on-line help

type:

help langWe have already discussed numerous features of MATLAB’s language through many

examples in the previous sections. You are advised to pay special attention to

proper usage of punctuation marks and different delimiters (Appendix A) and op-

erators, especially the array operators (a period (.) preceding the arithmetic oper-

ators, Section 3.2.1) and the relational operators (Section 3.2.2). For control-flow,

MATLAB provides for and while loops, an if-elseif-else construct, and a

switch-case-otherwise construct. All the control-flow statements must termi-

nate with corresponding end statements. We now discuss flow control and some

other specific features of the language. See the on-line help for more details.

4.3.1 Use of comments to create on-line help

As we have already pointed out in the discussion on function files (Section 4.2,

page 104), the comment lines at the beginning (before any executable statement)

of a script or a function file are used by MATLAB as the on-line help on that file.

This automatically creates the on-line help for user-written functions. It is a good
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idea to copy the function definition line without the word function among those

first few comment lines so that the execution syntax of the function is displayed

by the on-line help. The command lookfor looks for the argument string in the

first commented line of M-files. Therefore, in keeping with the somewhat confusing

convention of MATLAB’s built-in functions, you should write the name of the script

or function file in uppercase letters, followed by a short description with keywords

as the first commented line. Thus, the first line following the function definition

line in the example function on page 106, Section 4.2.1, reads

% SOLVEXF solves a 3x3 matrix equation with parameter r.

4.3.2 Continuation

An ellipsis (three consecutive periods) at the end of a line denotes continuation. So,

if you type a command that does not fit on a single line, you may split it across two

or more lines by using an ellipsis at the end of each but the last line.

Examples:

A = [1 3 3 3; 5 10 -2 -20; 3 5 ...

10 2; 1 0 0 9];

x = sin(linspace(1,6*pi,100)) .* cos(linspace(1,6*pi,100)) +...

0.5*ones(1,100);

plot(tube_length,fluid_pressure,’:’,tube_length,...

theoretical_pressure,’-’)

(The last command assumes that variables tube length, fluid pressure, etc.

exist in the workspace.)

You may not, however, use continuation inside a character string. For example,

typing

logo = ’I am not only the President and CEO of Miracle Hair,...

but also a client’;

produces an error. For creating such long strings, break the string into smaller

string segments and use concatenation (see Section 3.3).

4.3.3 Global variables

It is possible to declare a set of variables to be globally accessible to all or some

functions without passing the variables in the input list. This is done with the

global command. For example, the statement global x y z declares the variables

x, y, and z to be global. This statement goes before any executable statement in

the functions and scripts that need to access the values of the global variables. Be

careful with the names of the global variables. It is generally a good idea to name

such variables with long strings to avoid any unintended match with other local

variables.

Example: Consider solving the following first-order ODE:

ẋ = kx+ c sin t, x(0) = 1.0
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where you are interested in solutions for various values of k and c. Your script file
may look like

% scriptfile to solve a first-order ode.

% -------------

ts = [0 20]; % specify time span=[t_0 t_final]

x0 = 1.0; % specify initial condition

[t, x] = ode23 (’ode1’,ts,x0); % execute ode23 to solve the ODE.

plot(t,x) % plot the result

and the function ode1 may look like

function xdot = ode1(t,x);

% ODE1: function to compute the derivative xdot

% at given t and x.

% Call syntax: xdot = ode1 (t,x);

% -------------

xdot = k*x + c*sin(t);

This, however, won’t work. In order for ode1 to compute xdot, the values of

k and c must be prescribed. These values could be prescribed inside the function

ode1 but you would have to edit this function each time you change the values of

k and c. An alternative3 is to prescribe the values in the script file and make them

available to the function ode1 through global declaration.

% scriptfile to solve a first-order ode.

% -------------

global k_value c_value % declare global variables

k_value = 5; c_value = 2; % specify their values

ts = [0 20]; % specify time span

x0 = 1.0; % specify initial conditions

[t, x] = ode23(’ode1’,ts,x0); % execute ode23 to solve the ODE

plot(t,x) % plot the result

Now you have to modify the function ode1 so that it can access the global

variables:

function xdot = ode1(t,x);

% ODE1: function to compute the derivative xdot

% at given t and x.

% Call syntax: xdot = ode1(t,x);

% -------------

global k_value c_value

xdot = k_value*x + c_value*sin(t)

Now, if the values of k value and c value are changed in the script file, the new

values become available to ode1 too. Note that the global declaration is only in the

script file and the user function file ode1, and therefore k value and c value will be

available to these files only.

3Another alternative is to use ode23 to pass the variables k and c to ode1. See Section 8.2.5 on
page 246 for details.
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4.3.4 Loops, branches, and control-flowFor on-line help

type:

help lang MATLAB has its own syntax for control-flow statements such as for loops, while

loops and, of course, if-elseif-else branching. In addition, it provides three

commands—break, error, and return—to control the execution of scripts and

functions. A description of these functions follows.

For loops

A for loop is used to repeat a statement or a group of statements for a fixed number

of times. Here are two examples:

Example 1: for m=1:100

num = 1/(m+1)

end

Example 2: for n=100:-2:0, k = 1/(exp(n)), end

The counter in the loop can also be given explicit increment: for i=m:k:n to

advance the counter i by k each time (in the second example, n goes from 100 to 0

as 100, 98, 96, . . ., etc.). You can have nested for loops, that is, for loops within

for loops. Every for, however, must be matched with an end.

While loops

A while loop is used to execute a statement or a group of statements for an indefinite

number of times until the condition specified by while is no longer satisfied. For

example:

% let us find all powers of 2 below 10000

v = 1; num = 1; i=1;

while num < 10000

v = [v; num];

i = i + 1;

num = 2^i;

end

v % display v

Once again, a while must have a matching end.

If-elseif-else statements

This construction provides a logical branching for computations. Here is an exam-

ple:

i=6; j=21;

if i > 5

k = i;

elseif (i>1) & (j==20)

k = 5*i + j;

else
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k = 1;

end

Of course, you can have nested if statements as long as you have matching end

statements. You can nest all three kinds of loops, in any combination.

Switch-case-otherwise

This construction provides another logical branching for computations. A flag (any

variable) is used as a switch and the values of the flag make up the different cases

for execution. The general syntax is

switch flag

case value1

block 1 computation

case value2

block 2 computation

otherwise

last block computation

end

Here, block 1 computation is performed if flag=value1, block 2 computation is

performed if flag=value2, and so on. If the value of flag does not match any

case, then the last block computation is performed. Of course, like all good things

in life, the switch must come to an end too.

The switch can be a numeric variable or a string variable. Let us look at a

more concrete example using a string variable as the switch:

color = input(’color = ’,’s’);

switch color

case ’red’

c = [1 0 0];

case ’green’

c = [0 1 0];

case ’blue’

c = [0 0 1];

otherwise

error(’invalid choice of color’)

end

Break

The command break inside a for or while loop terminates the execution of the

loop, even if the condition for execution of the loop is true.

Examples: (Assume that the variables used in the codes below are predefined.)
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1. for i=1:length(v)

if v(i) < 0 % check for negative v

break % terminate loop execution

end

a = a + v(i); % do something

end

2. x = exp(sqrt(163));

while 1

n = input(’Enter max. number of iterations ’)

if n <= 0

break % terminate loop execution

end

for i=1:n

x = log(x); % do something

end

end

If the loops are nested then break terminates only the innermost loop.

Error

The command error(’message’) inside a function or a script aborts the execution,

displays the error message message, and returns the control to the keyboard.

Example:

function c = crossprod(a,b);

% crossprod(a,b) calculates the cross product axb.

if nargin~=2 % if not two input arguments

error(’Sorry, need two input vectors’)

end

if length(a)==2 % begin calculations

....

end

Return

The command return simply returns the control to the invoking function.

Example:

function animatebar(t0,tf,x0);

% animatebar animates a bar pendulum.

:

disp(’Do you want to see the phase portrait?’)

ans = input(’Enter 1 if YES, 0 if NO ’);

% see text for description

if ans==0 % if the input is 0

return % exit function
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else

plot(x,...) % show the phase plot

end

4.3.5 Interactive input For on-line help

type:

help langThe commands input, keyboard, menu, and pause can be used inside a script or

function file for interactive user input. Their descriptions follow.

Input

The command input(’string’), used in the previous example, displays the text

in string on the screen and waits for the user to give keyboard input.

Examples:

• n=input(’Largest square matrix size ’); prompts the user to input the

size of the “largest square matrix” and saves the input in n.

• more=input(’More simulations? (Y/N)’,’s’); prompts the user to type

Y for YES and N for NO and stores the input as a string in more. Note that

the second argument, ’s’, of the command directs MATLAB to save the user

input as a string.

This command can be used to write user-friendly interactive programs in MATLAB.

Keyboard

The command keyboard inside a script or a function file returns control to the

keyboard at the point where the command occurs. The execution of the function

or the script is not terminated. The command window prompt � changes to

k� to show the special status. At this point, you can check variables already

computed, change their values, and issue any valid MATLAB commands. The

control is returned to the function by typing the word return on the special prompt

k� and then pressing the return/enter key.

This command is useful for debugging functions. Sometimes, in long compu-

tations, you may like to check some intermediate results, plot them and see if the

computation is headed in the right direction, and then let the execution continue.

Example:

% EXKEYBRD: a script file for example of keyboard command

A = ones(10) % make a 10x10 matrix of 1s

for i=1:10

disp(i) % display the value of i

A(:,i) = i*A(:,i); % replace the ith column of a

if i==5 % when i = 5

keyboard % return the control to keyboard

end

end
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During the execution of the preceding script file exkeybrd.m, the control is

returned to the keyboard when the value of the counter i reaches five. The execution

of exkeybrd resumes after the control is returned to the script file by typing return

on the special prompt k�.

Menu

The command menu(’MenuName’,’option1’,’option2’,...) creates an on-screen

menu with the MenuName and lists the options in the menu. The user can select

any of the options using the mouse or the keyboard, depending on the computer.

The implementation of this command on Macs and PCs creates a nice window menu

with buttons.
Example:

% Plotting a circle

r = input(’Enter the desired radius ’);

theta = linspace(0,2*pi,100);

r = r*ones(size(theta)); % make r the same size as theta

coord = menu(’Circle Plot’,’Cartesian’,’Polar’);

if coord==1 % if the first option is selected

%- from the menu

plot(r.*cos(theta),r.*sin(theta))

axis(’square’)

else % if the second option is selected

%- from the menu

polar(theta,r);

end

In this script file, the menu command creates a menu with the name Circle Plot

and two options—Cartesian and Polar. The options are internally numbered. When

the user selects one of the options, the corresponding number is passed on to the

variable coord. The if-else construct following the menu command shows what to

do with each option. Try out this script file.

Pause

The command pause temporarily halts the current process. It can be used with or

without an optional argument:

pause halts the current process and waits for the user to give a

“go-ahead” signal. Pressing any key resumes the process.

Example: for i=1:n, plot(X(:,i),Y(:,i)), pause, end.

pause(n) halts the current process, pauses for n seconds,

and then resumes the process.

Example: for i=1:n, plot(X(:,i),Y(:,i)), pause(5), end

pauses for five seconds before it plots the next graph.
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4.3.6 Recursion

The MATLAB programming language supports recursion, i.e., a function can call

itself during its execution. Thus, recursive algorithms can be directly implemented

in MATLAB (what a break for Fortran users!). To illustrate this, let us look at

a simple example of computing the nth term in the Fibonacci sequence (actu-

ally, first discovered by Pingala (300–200 BCE), an ancient Indian mathematician):

0, 1, 1, 2, 3, 5, 8, . . . . If we label the terms as F0, F1, F2, etc., then the recursion

relationship for generating this sequence is Fk = Fk−1 + Fk−2 for k > 2. The seeds

are F0 = 0 and F1 = F2 = 1. The nth term in this sequence can be computed by

the following recursive function:

function Fn = fibonacci(n)

% FIBONACCI: computes nth term in the Fibonacci sequence

% written by Abhay, May 15, 09, modified by RP, June 1, 09

if n==0, Fn = 0; % Fn=0 for n=0

elseif n==1 | n==2, Fn = 1; % Fn=1, for n=1 OR n=2

else Fn = fibonacci(n-1) + fibonacci(n-2); % recursion relation

end

As you can see, this function calls itself when computing Fn.

4.3.7 Input/output

MATLAB supports many standard C-language file I/O functions for reading and

writing formatted binary and text files. The functions supported include
For on-line help

type:

help iofun
fopen opens an existing file or creates a new file,

fclose closes an open file,

fread reads binary data from a file,

fwrite writes binary data to a file,

fscanf reads formatted data from a file,

fprintf writes formatted data to a file,

sscanf reads strings in specified format,

sprintf writes data in formatted string,

fgets reads a line from a file including new-line character,

fgetl reads a line from a file discarding new-line character,

frewind rewinds a file,

fseek sets the file position indicator,

ftell gets the current file position indicator, and

ferror inquires file I/O error status.

You are likely to use only the first six commands in the list for file I/O. For most

purposes, fopen, fprintf, and fclose should suffice. For a complete description

of these commands, see the on-line documentation or a C-language reference book,

for example, Kernighan and Ritchie [4].



122 Programming in MATLAB: Scripts and Functions

Here is a simple example that uses fopen, fprintf, and fclose to create and

write formatted data to a file:

% TEMTABLE - generates and writes a temperature table

% Script file to generate a Fahrenheit-Celsius

% temperature table. The table is written in

% a file named ’Temperature.table’.

% --------------------------------------------------

F=-40:5:100; % take F=[-40 -35 -30 .. 100]

C=(F-32)*5/9; % compute corresponding C

t=[F;C]; % create a matrix t (2 rows)

fid = fopen(’Temperature.table’,’w’);

fprintf(fid,’ Temperature Table\n ’);

fprintf(fid,’ ~~~~~~~~~~~~~~~~~ \n’);

fprintf(fid,’Fahrenheit Celsius \n’);

fprintf(fid,’ %4i %8.2f\n’,t);

fclose(fid);

In this script file, the first I/O command, fopen, opens a file Temperature.table
in the write mode (specified by ’w’ in the command) and assigns the file identifier

to fid. The following fprintf commands use fid to write the strings and data

to that file. The data is formatted according to the specifications in the string

argument of fprintf. In the previous command, \n stands for new line, %4i stands

for an integer field of width 4, and %8.2f stands for a fixed point field of width 8

with two digits after the decimal point.

The output file, Temperature.table, is shown here. Note that the data matrix

t has two rows, whereas the output file writes the matrix in two columns. This is

because t is read columnwise and then written in the format specified (two values

in a row).

Temperature Table

~~~~~~~~~~~~~~~~~

Fahrenheit Celsius

-40 -40.00

-35 -37.22

-30 -34.44

-25 -31.67

: :

75 23.89

80 26.67

85 29.44

90 32.22

95 35.00

100 37.78

You can also read and write tables using high-level functions such as readtable

and writetable. See page 134 in Section 4.4.4 for examples.
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4.4 Advanced Data Objects

MATLAB supports several data objects other than by-now-familiar 2-D arrays.

Two among these are structures and cells. They have fundamentally different data

structures. Also, the most familiar data object, a matrix, can be multidimensional.

Although a detailed discussion of these objects and their applications is beyond

the scope of this book, this section gives enough introduction and examples to get

you started. At first, these objects look very different from a matrix, MATLAB’s

heart and soul. The fact, however, is that these objects, as well as a matrix, are

just special cases of the fundamental data type, the array. As you become more

comfortable with these objects, they fall into their right places and you start working

with them just as you would with vectors and matrices.

4.4.1 Multidimensional matrices

MATLAB supports multidimensional matrices. You can create n dimensional ma-

trices by specifying n indices. The usual matrix creation functions, zeros, ones,

rand, and randn, accept n indices to create such matrices. For example,

A = zeros(4,4,3) initializes a 4× 4× 3 matrix A, and

B = rand(2,4,5,6) creates a 2× 4× 5× 6 random matrix B.

So, how do we think about the other (the third, fourth, etc.) dimensions of the

matrix? You can write a 2-D matrix on a page of a notebook. Think of the third

dimension as the different pages of the notebook. Then matrix A (= zeros(4,4,3))

occupies three pages, each page having a 4 × 4 matrix of zeros. Now, if we want

to change the entry in the fourth row and fourth column of the matrix on page

2 to a number 6, we type A(4,4,2)=6. Thus, the usual rules of indexing apply;

we only have to think which matrix in the stack we are accessing. Now, once we

have moved out of the page (a 2-D matrix), we have no limitation—we can have

several notebooks (fourth dimension), several bookcases full of such notebooks (fifth

dimension), several rooms full of such bookcases (sixth dimension), and so forth.

The multidimensional indexing makes it easy to access elements in any direction

you wish—you can get the first element of the matrices on each page, from each

notebook, in each bookcase, from all rooms, with C(1,1,:,:,:,:). The usual

indexing rules apply in each dimension; therefore, you can access submatrices with

index ranges just as you would for a 2-D matrix.

When you operate on multidimensional matrices, you have to be careful. All

linear algebra functions will work only on 2-D matrices. You cannot multiply two

matrices if they are 3-D or higher-dimensional matrices. Matrix multiplication is

not defined for such matrices. All array operations (element-by-element operations)

are, however, valid for any-dimensional matrix. Thus, 5*A, sin(A), and log(A) are

all valid commands for matrix A of any dimension. Similarly, if A and B are

two matrices of the same dimension, then A+B or A-B is valid irrespective of the

dimensionality of A and B.
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4.4.2 Structures

A structure is a data construct with several named fields. Different fields can have

different types of data, but a single field must contain data of the same type.

A structure is like a record. One record (structure) can contain information

(data) about various things under different heads (fields). For example, you could

maintain a record book with one page devoted to each of your relatives. You

could list information about them under the headings relationship, address, name

of children, date of birth of all children, etc. Although the headings are the same in

each record, the information contained under a heading could vary in length from

record to record. To implement this record-keeping in MATLAB, what you have is

a structure. But, what’s more, you are not limited to a serial array of record pages

(your record book), so you can have a multidimensional structure.

Let us now look at an example of a structure. We are going to make a structure

called FallSem with fields course, prof, and score. We wish to record the names

of courses, names of corresponding professors, and your performance in tests in

those courses. Here is one way to do this:

FallSem.course = ’cs101’;

FallSem.prof = ’Turing’;

FallSem.score = [80 75 95];

Thus, fields are indicated by adding their names after the name of the structure,

with a dot separating the two names. The fields are assigned values, just as any

other variable in MATLAB. In the preceding example structure, FallSem, the fields

course and prof contain character strings, and score contains a vector of numbers.

Now, how do we generate the record for the next course? Well, structures as well

as their fields can be multidimensional. Therefore, we can generate the next record

in a few different ways:

Multiple records in a structure array: We can make the structure FallSem to

be an array (in our example a vector will suffice) and then store a complete

record as one element of the array:

FallSem(2).course = ’phy200’; FallSem(3).course = ’math211’;

FallSem(2).prof = ’Fiegenbaum’; FallSem(3).prof = ’Ramanujan’;

FallSem(2).score = [72 75 78]; FallSem(3).score = [85 35 66];

Thus, we have created a structure array FallSem of size 1× 3. Each element

of FallSem can be accessed just as you access an element of a usual array—

FallSem(2) or FallSem(1), etc. By typing FallSem(1), you get the values

of all the fields, along with the field names. You can also access individual

fields, for example, FallSem(1).prof or FallSem(1).score(3). See Fig. 4.1

for example output.

In a structure array, each element must have the same number of fields.

Each field, however, can have data of different sizes. Thus, FallSem(1).score

can be a three-element-long row vector, whereas FallSem(2).score can be a

five-element-long column vector.



4.4 Advanced Data Objects 125

Create a structure FallSem with
three fields: course, prof,
and score.

When queried,  MATLAB shows
the entire structure.

After adding two more records,
FallSem becomes an array, and
when queried, MATLAB  now 
gives structural information about  
the structure.

Use array index on the structure to
access its elements.

You can use index notation for 
the structure as well as its fields.

When no index is specified for
the structure, MATLAB  displays
the field values of all records.

Use a loop to assign values from 
a field of several records. 

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

FallSem.course = 'cs101';
FallSem.prof = 'Turing';
FallSem.score = [80 75 95];

FallSem

FallSem = 
    course: 'cs101'
      prof: 'Turing'
     score: [80 75 95]

FallSem(2).course = 'phy200';   FallSem(3).course = 'math211';
FallSem(2).prof = 'Fiegenbaum'; FallSem(3).prof = 'Ramanujan';
FallSem(2).score = [72 75 78];  FallSem(3).score = [85 35 66];

FallSem

FallSem = 
1x3 struct array with fields:
    course
    prof
    score

FallSem(2).course

ans =
phy200

FallSem(3).score(1)

ans =
    85

FallSem.score

ans =
    80    75    95
ans =
    72    75    78
ans =
    85    35    66

for k=1:3, 
    all_scores(k,:) = FallSem(k).score; 
end

Figure 4.1: A tutorial lesson on structures.
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Multiple records in field arrays: For the example we have chosen, we could

store multiple records in a single structure (i.e., keep FallSem as a 1 × 1

structure) by making the fields to be arrays of appropriate sizes to accommo-

date the records:

FallSem.course = char(’cs101’,’phy200’,’math211’);

FallSem.prof = char(’Turing’,’Fiegenbaum’,’Ramanujan’);

FallSem.score = [80 75 95; 72 75 78; 85 35 66];

In this example, the function char is used to create separate rows of character

strings from the input variables. Here, FallSem is a 1 × 1 structure, but the

field course is a 3 × 7 character array, prof is a 3 × 10 character array, and

score is a 3× 3 array of numbers.

This example works out nicely because we could create a column vector for

course names, a column vector for professors’ names, and a matrix for scores where

each row corresponds to a particular course. What if we had the third record as

a matrix for each course? We could still store the record in both ways mentioned.

Even though the first method of creating a structure array seems to be the easiest,

we could also use the second method and have the third field score be a 3-D matrix.

Creating structures

In the preceding examples, we have already seen how to create structures by direct

assignment. Just as you create a matrix by typing its name and assigning values

to it—A=[1 2; 3 4];—you can create a structure by typing its name along with

a field and assigning values to the field. This is what we did in the examples. The

other way of creating a structure is with the struct function. The general syntax

of struct is

str name = struct(’fieldname1’, ’value1’, ’fieldname2’, ’value2’,· · ·)

Thus, the structure FallSem created earlier could also be created using the struct

function as follows:

As a single structure:

FallSem = struct(’course’,char(’cs101’,’phy200’,’math211’),...

’prof’, char(’Turing’,’Fiegenbaum’,’Ramanujan’),...

’score’,[80 75 95; 72 75 78; 85 35 66]);

As a structure array:

Fall_Sem = [struct(’course’,’cs101’,’prof’,’Turing’,...

’score’,[80 75 95]);

struct(’course’,’phy200’,’prof’,’Fiegenbaum’,...

’score’,[72 75 78]);

struct(’course’,’math211’,’prof’,’Ramanujan’,...

’score’,[85 35 66])];

Note that this construction creates a 3 × 1 (a column vector) structure array

Fall Sem.
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Manipulating structures

Manipulation of structures is similar to the manipulation of general arrays—access

elements of the structure by proper indexing and manipulate their values. There is,

however, a major difference; you cannot assign all values of a field across a structure

array to a variable with colon range specifier. Thus, if Fall Sem is a 3×1 structure

array, then

Fall Sem(1).score(2) is valid and gives the second element of score

from the first record of Fall Sem,

Fall Sem(1).score(:) gives all elements of score from Fall Sem(1),

same as Fall Sem(1).score, and

a = Fall Sem(:).score is invalid, does not assign score from all

records to A, though the command

Fall Sem(:).score or (Fall Sem.score)

displays scores from all records.

So, although you can see (on the screen) field values across multiple records with

Fall Sem(:).score, you have to use a loop construction to assign the values to a

variable:

for k=1:3,

all_scores(k,:) = Fall_Sem(k).score;

end

The assignment cannot be done directly with the colon operator because the

values of fields from several records are treated as separate entities. The field

contents are also allowed to be of different sizes. Therefore, although you can use a

for loop for assignment, you have to take extra care to ensure that the assignment

makes sense. For example, in the earlier for, if Fall Sem(2).score has only two

test scores, then the assignment will produce an error.

It is clear from the previous examples that you can use indices for structures as

well as fields for accessing information. Here, we have used only character arrays

and number arrays in the fields. You can, however, also have structures inside

structures, but the level of indexing becomes quite involved and requires extra care

if you have nested structures.

There are also several functions provided to aid manipulation of structures—

fieldnames, setfield, getfield, rmfield, isfield, etc. The names of most

of these functions are suggestive of what they do. To get the correct syntax, please

see the on-line help on these functions.
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4.4.3 Cells

A cell is the most versatile data object in MATLAB. It can contain any type of

data—an array of numbers, strings, structures, or cells. An array of cells is called

a cell array.

You can think of a cell array as an array of data containers. Imagine putting

nine empty boxes on the floor in three rows and three columns. Let us call this

arrangement a 3 × 3 cell, my riches. Now, let us put clothes in one box, shoes in

the second box, books in the third box, a computer in the fourth box, all greenbacks

and coins in the fifth box, and so on. Each box is a container just like any other box;

however, the contents of each are different. Thus, we have an arrangement that can

accommodate all kinds of things in the containers and still look superficially similar.

Now replace the boxes with MATLAB data containers, cells, and replace the shoes

with a matrix, the clothes with a string array, the books with a structure, the

computer with another cell (many little boxes inside the big box), and so on, and

what you have got, at the topmost level, is a MATLAB data object called a cell.

Let us first create a cell, put some data in it, and then discuss various aspects

of cells using this cell as an example:

C = cell(2,2); % create a 2 by 2 cell

% cell(2) will do the same

C{1,1} = rand(3); % put a 3x3 random matrix in the 1st box

C{1,2} = char(’john’,’raj’); % put a string array in the 2nd box

C{2,1} = Fall_Sem; % put a structure in the 3rd box

C{2,2} = cell(3,3); % put a 3x3 cell in the 4th box

In this example, creating a cell superficially looks like creating an ordinary array,

but there are some glaring differences. First, the contents are as varied as we want

them to be. Second, there are curly braces, instead of parentheses, on the left side

of the assignment. So, what are those curly braces for? Could we use parentheses

instead?

A cell is different from an ordinary (number) array in that it distinguishes be-

tween the (data) containers and the contents, and it allows access to both, sepa-

rately. When you treat a cell as an array of containers, without paying any attention

to the contents, the cell behaves just as an array and you can access a container

with the familiar indexing syntax, C(i,j). What you get is the container located

at the ith row and jth column. The container will carry a label that will tell

you whether the contents are double, char, struct, or cell, and of what dimen-

sion. If you want to access the contents of a container, you have to use the special

cell-content-indexing—indices enclosed within curly braces. Thus, to see the 3 × 3

random matrix in C(1, 1), you type C{1,1}. See Fig. 4.2 for some examples.

Creating cells

We have already discussed how to create cells using the cell function. We can also

create cells directly:

C = {rand(3) char(’john’,’raj’); Fall Sem cell(3,3)};
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Create a 3 x 1 structure 
Fall_Sem with three fields. 

Create a 2 x 2 cell C and put 
different types of data in the 
individual containers of C.

Use content indexing, {i,j}, on 
the cell to access the contents of 
the container at location (i,j).

Use array index notation to access 
a container (but not its contents). 

You can use multiple index 
notation to access a particular
data in a particular container.

This command locates 
Fall_Sem(3).score(3) in C.

You can also combine the 
structure notation with cell indices. 

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

Fall_Sem = 
 [struct(’course’,’cs101’,’prof’,’Turing’,’score’,[80 75 95]);
  struct(’course’,’phy200’,’prof’,’Fiegenbaum’,’score’,[72 75 78]);
  struct(’course’,’math211’,’prof’,’Ramanujan’,’score’,[85 35 66])];

C = cell(2,2);
C{1,1} = rand(3);
C{1,2} = char(’john’,’raj’);
C{2,1} = Fall_Sem;
C{2,2} = cell(3,3);

C

C = 
    [3x3 double]    [2x4 char]

    [3x1 struct]    {3x3 cell}

C{1,2}

ans =
john
raj

C(1,2)

ans = 
    [2x4 char]

C{1,2}(1,:)

ans =
john

C{2,1}(3).prof

ans =
Ramanujan

C{2,1}(3).score(3)

ans =
    66

When queried, MATLAB shows
what type of contents  the 
containers of C have.

Figure 4.2: A tutorial lesson on cells.
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This example illustrates that the curly braces are to a cell what square brackets are

to an ordinary array when used on the right side of an assignment statement.

Manipulating cells

Once you get used to curly braces versus parentheses on both sides of an assignment

statement, manipulating cells is just as easy as manipulating an ordinary array.

However, there is much more fun to be had with cell indexing, the type of indexing

fun you have not had before. Create the cell C given in the preceding example

along with the structure Fall Sem given on page 126, Section 4.4.2. Now try the

following commands and see what they do.

C(1,1) = {[1 2; 3 4]};

C{1,2}(1,:)

C{2,1}(1).score(3) = 100;

C{2,1}(2).prof

C{2,2}{1,1} = eye(2);

C{2,2}{1,1}(1,1) = 5;

There are several functions available for cell manipulation. Some of these func-

tions are cellstr, iscellstr, cell2struct, struct2cell, iscell, num2cell, etc.

See the on-line help on these functions for correct syntax and usage.

Two cell functions deserve special mention. These functions are

celldisp displays the contents of a cell on the screen,

works recursively on cells inside cells, and

cellplot plots the cell array schematically.

The result of cellplot(C) is shown in Fig. 4.3 for cell C created in Fig. 4.2. The

contents of each cell are shown schematically as arrays of appropriate sizes. The

nonempty array elements are shown shaded.

Output of cellplot(C)

Figure 4.3: Cells can be displayed schematically with the function cellplot.
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4.4.4 Tables

A table is a relatively new data-type introduced in MATLAB to work with tabular

data. Tables, in general, find a lot of utility in storing and manipulating certain

kinds of related data. We all have experience of creating tables of some kind or

the other in writing reports, tabulating experimental results, maintaining personal

records, etc. Tables are generally categorized by rows and columns. If you have

any experience with spreadsheets, you generally find that columns represent differ-

ent categories of data and rows contain individual records. This is precisely what

MATLAB has provided as the main attributes of this data-type. Now, a table must

have the same number of columns in each row. Otherwise, it wouldn’t be a table,

would it? If you try otherwise, you will get a broken table.

So, the main things to remember about a table are:

Rows and columns: A table contains any number of rows, but each row has the

same number of columns. Conversely, you can have any number of columns

but each column must have the same number of rows. The bottom line is, a

table must be rectangular.

Data in columns: Each column of the table can contain different types of data,

e.g., numeric data, character strings, logical data, categorical 4 data, etc.

Names of rows and columns: The names of rows are specified in a cell array.

The columns are referred to as variables and numbered as var1, var2, etc.

Again, the names of variables (or columns) are specified in a cell array.

Table Meta data: Because a table contains various kinds of data, the names of

rows and columns may not be sufficient to describe the table completely. Many

a time, we need additional descriptors for the table as well as its variables

(columns). For example, we may want to store the units of each variable as

an additional descriptor. We may want to add a description to the table itself.

All such extra things are created and stored as a part of table properties (see

on-line documentation for more details)—a structure that can be created and

manipulated just like any other structure. For example, let us say that T is a

table, then

T.Properties lists all table properties

T.Properties.VariableNames contains the names of all variables (columns)

in a cell array

T.Properties.VariableUnits is a cell array of units corresponding to

each variable

T.Properties.RowNames contains the names of rows in a cell array

T.Properties.Description contains a description of the table

(in a string or a cell array), etc.

4Categorical data is yet another data-type in MATLAB that is meant to address the need of
classifying a group of data, say in a table, in a particular category. For example, you could have a
list of 100 students, each student belonging to just one of five majors. In that case, the names of
majors could form the list of categories for the entire data set. An array of categories is created
with the command categorical and generally contains non-numeric data as names of categories.
See on-line documentation for categorical.
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A table is created from columns of data, called variables, with the following

command:

table name = table(var1, var2, ..., varN, NameSpecifier, Value);

where NameSpecifier is either ’RowNames’ or ’VariableNames’ and the Value is a

cell array containing the names as distinct strings.

Now, let us look at an example to make these ideas clear. Let us create the

following table in MATLAB using the table command and all the descriptions

above.

Table 4.1: CS100, Fall Semester, 2016
Student ID Name Section Marks Grade

2016-CX-1011 Singh, Rahul B 93 A
2016-MC-2213 Fast, Kelly A 85 B
2016-MZ-1112 Yang, Cheng A 96 A+
2015-CX-0959 Bush, Robert A 56 D
2016-CC-0023 Jacobs, Kim B 99 A+

Let us say that we want to use the Student IDs as ’RowNames’ and the data in

other columns as Variables. Then we need to create appropriate arrays (cell array

for Names, categorical arrays for Section and Grade, and numerical array for Marks)

for each variable. This is easily done as shown in Fig. 4.4. It is evident from this

example that we need to pay special attention to variables that contain character

strings as data. They typically require a cell for holding the data.

Note that we can change the table properties as we wish (see Fig. 4.4). In

the example given here, we have added a descriptor for the table by setting the

table property, CS100.Properties.Description to a desired string (CS100, Fall

Semester 2016) that then shows up in the table summary.

Once the table is created, you can manipulate the table as you would do any

MATLAB data. For example, you can pull out just the grades of the students

against the IDs by creating another table:

PostGrade = CS100(:,4)

The output of this command is

PostGrade =

Grade

_____

2016-CX-1011 A

2016-MC-2213 B

2016-MZ-1112 A+

2015-CX-0959 D

2016-CC-0023 A+
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>> ID = {'2016-CX-1011'; '2016-MC-2213'; ...
        '2016-MZ-1112';'2015-CX-0959';'2016-CC-0023'};
>> Name = {'Singh, Rahul';'Fast, Kelly';
           'Yang, Cheng';'Bush, Robert';'Jacobs, Kim'};
>> Section = categorical({'B'; 'A'; 'A'; 'A'; 'B'});
>> Marks = [93; 85; 96; 56; 99];
>> Grade = categorical({'A';'B';'A+';'D';'A+'});
>> columns = {'Name' 'Section' 'Marks' 'Grade'};
>> CS100 = table(Name,Section,Marks,Grade,...
                'RowNames',ID,'VariableNames',columns);
>> CS100

CS100 = 

                         Name         Section    Marks    Grade
                     ______________    _______    _____    _____

    2016-CX-1011    'Singh, Rahul'    B          93       A    
    2016-MC-2213    'Fast, Kelly'     A          85       B    
    2016-MZ-1112    'Yang, Cheng'     A          96       A+   
    2015-CX-0959    'Bush, Robert'    A          56       D    
    2016-CC-0023    'Jacobs, Kim'     B          99       A+   

>> CS100.Properties.Description = 'CS100, Fall Semester, 2016';
>> summary(CS100)

Description:  CS100, Fall Semester, 2016

Variables:

    Name: 5x1 cell string

    Section: 5x1 categorical
        Values:

            A    3        
            B    2        

    Marks: 5x1 double
        Values:

            min       56     
            median    93     
            max       99     

    Grade: 5x1 categorical
        Values:

            A     1      
            A+    2      
            B     1      
            D     1      

Create the table

Show the table

Show a summary
of the table

Figure 4.4: A tutorial lesson on tables.
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There are several utility functions to help table creation and manipulation. We

list some of these functions here.

readtable creates a table by reading tabular data from a file

(supports many file formats, e.g., .txt, .xlsx, etc.)

writetable writes a table to a named file in specified format

summary provides a summary of the table (see Fig. 4.4)

array2table converts an array to a table

cell2table converts a cell to a table

struct2table converts a structure to a table, etc.

There are functions to convert a table into an array, structure, or cell as well,

and, as you may guess, they are table2array, table2cell and table2struct.

Reading and writing tables

Let us now write our table to a text file (cs100grades.txt) with VariableNames as

column headers (default option) and RowNames included in the first column (not

a default option but included by setting WriteRowNames property to true in the

input argument list), all columns separated by ‘tabs’:

writetable(CS100,’cs100grades.txt’,’WriteRowNames’,true,’Delimiter’,’tab’);

You can open the cs100grades.txt file and see the contents. Figure 4.5 shows

an image of the text file. Note that the column headers are not aligned but that

can be easily edited in the text file.

Figure 4.5: Table CS100 written to a text file cs100grades.txt.

Similarly, let us read the data shown in the Excel spreadsheet in the margin and

save it into a table:SummerTempData.xls

T = readtable(’SummerTempData.xls’)

The output of this command is: small

T =

SN Month Ave_Tmax

__ ________ ________

1 ’May’ 36

2 ’June’ 30

3 ’July’ 29

4 ’August’ 27
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4.5 Publishing Reports

You can create a fancy, formatted report in HTML, XML, LATEX, MS Word, or

MS PowerPoint (MS stuff only on PCs) using MATLAB’s built-in publisher. For a

quick introduction, see Lesson 10 in Chapter 2. Here we discuss, step by step, how

to generate a report using the MATLAB publisher.

1. Create a script file: First, create a script file containing all commands

required to do the computation or produce the desired result. Include com-

ments where necessary to clarify the commands. Let us take, for example, the

following script file.

% Plot a spiral given by r = e^(theta/10) for theta from 0 to 10*pi

% Create vectors theta and r

theta = linspace(0,10*pi,200); % 200 points between 0 & 10*pi

r = exp(-theta/10); % compute r

% plot the spiral using polar plot

polar(theta,r)

2. Format the script as a cell script: A cell5 is basically a set of related

commands that form one unit of computation, or a chunk of descriptive text

that forms a unit. A cell could contain one command, many commands,

or even no commands. The beginning of a cell is marked by the double

percent character (%%). A cell continues until the beginning of another cell is

encountered. The text in the line beginning with the %% character is used as

the section heading by the publisher. All such headings in a script are used

by the publisher to create a hyperlinked table of contents in the report. It is

generally a good idea to have an overall title for the report, generated by a

cell containing only the title, no commands, at the top of the script file.

%% Publishing Reports - A Simple Example

%% Description

% Plot a spiral given by r = e^(theta/10), 0 <=theta <= 10*pi

%

%% Create vectors theta and r

theta = linspace(0,10*pi,200); % 200 points between 0 & 10*pi

r = exp(-theta/10); % compute r

%% Plot the spiral using polar plot

polar(theta,r)

3. Format mathematical equations: Any mathematical equation or expres-

sion describing the computation can be formatted using the embedded LATEX

to make it appear like an equation rather than the text shown in the script file.

We would much rather have the spiral equation appear as r = e
θ
10 , 0 ≤ θ ≤ 10π

than how it appears now. So, let us format the equation using Cell → Insert
Text Markup → TeX Equation as follows:

%%

% $$r(\theta) = e^{-\frac{\theta}{10}}, \quad 0\le\theta\le 10\pi$$

5This cell is not to be confused with the cell data type. Here, it refers to its usual meaning of
a unit or a set. It is unfortunate that MATLAB uses the same term in these two contexts.
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Note that the mathematical expression is enclosed within the double dollar

signs and starts with a % sign. The equation must be preceded by a cell

marker (%%). The TeX Equation cell introduced earlier results in the following

equation (\quad introduces some blank space):

r(θ) = e−
θ
10 , 0 ≤ θ ≤ 10π.

If you do not know LATEX, see Table 4.2, which shows an introductory list of

LATEX commands used in mathematical expressions. These LATEX commands

are also useful for labeling the axes in figures (e.g., xlabel{’x_{n+1}’},

ylabel{’\log{\dot{x}_n}}).

4. Bells and whistles: It is also possible to format the text with boldface

letters, monospaced text (to mark MATLAB commands in comments), and

bulleted list. You can use these text mark-ups with options provided in the

PUBLISH tab of the Editor window (see Fig. 4.6). For example, boldface

text is created by enclosing the text with an * on both sides of the text, and

monospaced text is created by enclosing it within vertical bars (|). So, with

just a smattering of these formats, here is our script file ready to be published.

%% Publishing Reports - A Simple Example

%% Description

% Plot a spiral given by

%%

% $$r(\theta) = e^{-\frac{\theta}{10}}, \quad 0\le\theta\le 10\pi$$

% using the following steps:

%%

% * create data vectors theta and r

% * plot the spiral using function |polar|

%% Create vectors theta and r

theta = linspace(0,10*pi,200); % 200 points between 0 & 10*pi

r = exp(-theta/10); % compute r

%% Plot the spiral using polar plot

polar(theta,r)

Publish icon

Figure 4.6: The PUBLISH tab of the Editor window contains several formatting
tools for the cell script.
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5. Publish: Write and save the cell script given above in, say, a spiralplot.m file.

Open this file in the MATLAB editor and select File → Publish spiralplot.m.

MATLAB should create a directory named html, if it does not already exist,

and create a document with the name spiralplot.html, along with some other

helper files. MATLAB will also automatically open this file for you to see.

The file should be nicely formatted and include the figure generated by the

polar command.

The size of a figure appearing in the report is controlled by setting the

image height or width in Publish Con�guration for filename → Edit Publish
Con�gurations for filename dialog box.

You can use the same steps to publish the report in other file formats by selecting

the appropriate format from the Output settings in the Edit Publish Con�gura-
tion dialog box. Alternatively, you can use the publish(’ScriptName’,’format’)

command in the command window, e.g., publish(’spiralplot’,’html’);.

Another possibility, if you are a PC user and love MS Word, is to create a fancy

Notebook—a Word document with embedded MATLAB commands that can be

executed from within Word and the output, including graphics, can be included

in the document. The created Word document is called an M-book. You can

learn how to create an M-book and use it by going to helpdesk → MATLAB →
Publishing results → Notebook for publishing to Word. We, however, recommend

the publisher discussed previously.

Description Command Example Output

Greek \name \alpha,\theta,\beta,\pi α, β, θ, π
symbols \Theta,\Gamma,\Sigma,\phi Θ, Γ, Σ, φ

Functions \name \sin,\arccos sin, arccos
\log,\exp log, exp

Super- and ^{ } and _{ } \sin^{2}x_{n}+x_{n-1}^{k} sin2 xn + xkn−1

subscript

Fraction \frac{num}{denom} \frac{x+|y|}{n^2-\sinh x}
x+|y|

n2−sinh x

Square root \sqrt{ } \sqrt{3x^{4} -1}
√

3x4 − 1

Sum and \sum, \int \sum_{n=0}^{k}\frac{x^{n}}{n!},
∑k
n=0

xn

n!

integral \int_{0}^{\infty} e^{-x^2} dx
∫∞

0
e−x

2

dx

Derivatives \frac{d}{dx} \frac{dy}{dx} dy
dx

\dot{ },\ddot{ } \dot{x},\ddot{x} ẋ, ẍ
’, ’’ y’, y’’ y′, y′′

Table 4.2: Table of some LATEX commands
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EXERCISES

1. A script file to compute sine series: Write a script file named sineseries.m
that computes the value of sin(x) at a given x using n terms of the series expansion
of the sine function:

sin(x) = x− x3

3!
+
x5

5!
− · · · =

n∑
k=1

(−1)k−1 x2k−1

(2k − 1)!

Follow the steps given here.

• First, query MATLAB to see if the name sineseries is already taken by some
variable or function with the command exist(’sineseries’). What does the
MATLAB response mean? [Hint, see on-line help on exist.]

• Include the following line as the header (H1 line) of your script file.
%SINESERIES: computes sin(x) from series expansion

Now code the formula so that it computes the sum of the series for a given
scalar x and a given integer n.

• Save the file. Type help sineseries to see if MATLAB can access your script
file. Now, compute sin(π/6) with n = 1, 5, 10, and 20. Compare the results.
Do the same for some other x of your choice.

2. A function file to compute sine series: Take the script file written in Exercise 1
and convert it into a function file using the following steps.

• Name the function sine_series and modify the H1 line appropriately.

• Let x and n be the input to your function and y (the sum) be the output.

• Save the function and execute it to see that it works and gives the same output
as the script file in Exercise 1.

• Modify the function to include more on-line help on how to run the function.

• Modify the function so that it can accept a vector x and give an appropriate
output y.

• Modify the function to include a check on the input n. The function should
proceed only if n > 0 is an integer; otherwise it should display an error message.

• Provide for an optional output err, which gives the % error in y when compared
to sin(x). [Hint: Use conditional statement on nargout for optional output.]

• Modify the function so that it takes a default value of n = 10 if the user does
not specify n. [Hint: Use nargin.]

• Execute the function to check all features you have added.

3. A function as an input to another function: There are several ways in which a
function can be passed in the input argument list of another function. The function
to be used in the input list can be written as an anonymous function (see Sec-
tion 3.5.1, page 83) or it can be coded in a function file. How the function is passed
in the input list depends on how it is coded.

Code the function y(x) = sin(x)
x

as an anonymous function sinc and in a function
file called sincfun.m. You will use this function in the input list of ezplot (see
Section 3.8, page 95) in various ways with the following instructions.

• Use the anonymous function sinc in the input list of ezplot to plot the function
over the default domain.
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• Use the function sincfun as a string in the input list of ezplot to plot the
function over the default domain.

• Create a function handle for sincfun and use the handle in the input list of
ezplot to plot the function over the default domain.

4. Write subfunctions: In this exercise you will write a simple function to find
sin(x) and/or cos(x) from series expansion using two subfunctions—sine_series

and cosine_series.

• Write a function named cosine_series to evaluate the cosine series (follow
Exercise 2)

cos(x) = 1− x2

2!
+
x4

4!
− · · · =

n∑
k=1

(−1)k−1 x2(k−1)

2(k − 1)!

Execute and test the function to make sure it works correctly.

• Write a new function named trigseries as follows.

– The input list of the function should include x, n, and another string
variable options. The user can specify ‘sin’, ‘cos’, or ‘both’ for options.
The default should be ‘both’. The output list should include y and err,
as discussed in Exercise 2.

– The function trigseries should call sine_series and cosine_series as
appropriate to compute y and err, depending on what the user specifies
in options. Implement this call sequence with switch using options as
the switch.

– Program the output y and err to be two column arrays if the user asks
for ‘both’ in options or as the default.

• Copy and paste the functions sine_series and cosine_series as subfunctions
below the function trigseries in the same file.

• Delete the original files sine series2.m and cosine series2.m or rename them
something else. Test trigseries with various input and options. Make sure
it works correctly. Now execute trigseries with only one input x=[0 pi/6

pi/4 pi/3 pi/2]. Do you get reasonable answers?

5. Profile a function: Profile the function trigseries, developed in Exercise 4,
taking a vector x of 100 equally spaced points between 0 and π as the only input.

6. Recursion: Write a function to compute n! using recursion. (Note that this is
not the most efficient way to compute n!. However, it is conceptually a recursive
calculation that is easy to implement and test recursion in MATLAB.)





5. Graphics

MATLAB includes good tools for visualization. Basic 2-D plots, fancy 3-D graphics

with lighting and colormaps, complete user control of the graphics objects through

Handle Graphics tools for designing sophisticated graphics user interfaces, and an-

imation are now part of MATLAB. What is special about MATLAB’s graphics

facility is its ease of use and expandability. Commands for most garden-variety

plotting are simple, easy to use, and intuitive. If you are not satisfied with what

you get, you can control and manipulate virtually everything in the graphics win-

dow. This, however, requires an understanding of Handle Graphics, a system of

low-level functions to manipulate graphics objects. In this section, we take you

through the main features of MATLAB’s graphics facilities.

5.1 Basic 2-D Plots For on-line help

type:

help graph2dThe most basic and perhaps most useful command for producing a 2-D plot is

plot(xvalues, yvalues,’style-option’)

where xvalues and yvalues are vectors containing the x- and y-coordinates of points

on the graph and the style-option is an optional argument that specifies the color,

the line style (e.g., solid, dashed, dotted), and the point-marker style (e.g., o, +,

*). All three style options can be specified together. The two vectors xvalues and

yvalues MUST have the same length. Unequal length of the two vectors is the most

common source of error in the plot command. The plot function also works with a

single-vector argument, in which case the elements of the vector are plotted against

row or column indices. Thus, for two column vectors x and y each of length n,

plot(x,y) plots y versus x with a solid line (the default line style),

plot(x,y,’--’) plots y versus x with a dashed line (more on this below), and

plot(x) plots the elements of x against their row index.
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5.1.1 Style options

The style-option in the plot command is a character string that consists of one, two,

or three characters that specify the color and/or line style. There are several color,

line, and marker style-options:

Color Style-option Line Style-option Marker Style-option

y yellow - solid + plus sign
m magenta -- dashed o circle
c cyan : dotted * asterisk
r red -. dash-dot x x-mark
g green none no line . point
b blue ˆ up triangle
w white s square
k black d diamond, etc.

The style-option is made up of the color option, the line option, the marker

option, or a combination of them.

Examples:

plot(x,y,’r’) plots y versus x with a red solid line,

plot(x,y,’:’) plots y versus x with a dotted line,

plot(x,y,’b--’) plots y versus x with a blue dashed line, and

plot(x,y,’+’) plots y versus x as unconnected points marked by +.

When no style-option is specified, MATLAB uses a blue solid line by default.

5.1.2 Labels, title, legend, and other text objects

Plots may be annotated with xlabel, ylabel, title, and text commands.

The first three commands take string arguments, whereas the last one requires

three arguments—text(x-coordinate, y-coordinate, ’text’), where the coordinate val-

ues are taken from the current plot. Thus,

xlabel(’Pipe Length’) labels the x-axis with Pipe Length,

ylabel(’Fluid Pressure’) labels the y-axis with Fluid Pressure,

title(’Pressure Variation’) titles the plot with Pressure Variation, and

text(2,6,’Note this dip’) writes “Note this dip” at the location

(2.0,6.0) in the plot coordinates.

We have already seen an example of xlabel, ylabel, and title in Fig. 3.9. An

example of text appears in Fig. 5.2. The arguments of text(x,y,’text’) command

may be vectors, in which case x and y must have the same length and text may be

just one string or a vector of strings. If text is a vector, then it must have the same

length as x. A useful variant of the text command is gtext, which only takes a
For on-line help

type:

help graph2d string argument (a single string or a vector of strings) and lets the user specify the

location of the text by clicking the mouse at the desired location in the graphics

window.
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Legend

Legends on plots can be produced using the Insert → legend button in the figure

window toolbar (see Fig. 5.1) or with the legend command. The legend command

produces a boxed legend on a plot, as shown, for example, in Fig. 5.3 on page 148.

The legend command is quite versatile. It can take several optional arguments.

The most commonly used forms of the command are listed here.

legend(string1, string2, ..) produces legend using the text in

string1, string2, etc., as labels,

legend(LineStyle1, string1, ..) specifies the line style of each label,

legend(.., pos) writes the legend outside the plot-frame

if pos = −1 and inside if pos = 0,

(there are other options for pos too), and

legend off deletes the legend from the plot.

When MATLAB is asked to produce a legend, it tries to find a place on the plot

where it can write the specified legend without running into lines, grids, and other

graphics objects. The optional argument pos specifies the location of the legend

box. pos=1 places the legend in the upper right-hand corner (default), 2 in the

upper left-hand corner, 3 in the lower left-hand corner, and 4 in the lower right-

hand corner. The user, however, can move the legend at will with the mouse (click

and drag). For more information, see the on-line help on legend.

5.1.3 Axis control, zoom in, and zoom out

Once a plot is generated, you can change the axes limits with the axis command.

Typing

axis([xmin xmax ymin ymax])

changes the current axes limits to the specified new values xmin and xmax for the

x-axis and ymin and ymax for the y-axis.

Examples:

axis([-5 10 2 22]); sets the x-axis from −5 to 10, y-axis from 2 to 22,

axy = [-5 10 2 22]; axis(axy); same as above, and

ax = [-5 10]; ay=[2 22]; axis([ax ay]); same as above.

The axis command may thus be used to zoom in on a particular section of the

plot or to zoom out.1 There are also some useful predefined string arguments for

the axis command:

axis(’equal’) sets equal scale on both axes,

axis(’square’) sets the default rectangular frame to a square,

axis(’normal’) resets the axis to default values,

axis(’axis’) freezes the current axes limits, and

axis(’off’) removes the surrounding frame and the tick marks.

The axis command must come after the plot command to have the desired effect.

1There is also a zoom command that can be used to zoom in and zoom out using the mouse in
the figure window. See the on-line help on zoom.
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Semi-control of axes

It is possible to control only part of the axes limits and let MATLAB set the other

limits automatically. This is achieved by specifying the desired limits in the axis

command along with inf as the values of the limits that you would like to be set

automatically. For example,

axis([-5 10 -inf inf]) sets the x-axis limits at −5 and 10 and lets

the y-axis limits be set automatically, and

axis([-5 inf -inf 22]) sets the lower limit of the x-axis and the

upper limit of the y-axis, and leaves the

other two limits to be set automatically.

5.1.4 Modifying plots with the plot editor
For on-line help

type:

help plotedit

help propedit
MATLAB provides an enhanced (over previous versions) interactive tool for mod-

ifying an existing plot. To activate this tool, go to the figure window and click

on the left-leaning arrow in the menu bar (see Fig. 5.1). Now you can select and

double-click (or right-click) on any object in the current plot to edit it. Double-

clicking on the selected object brings up a property editor window where you can

select and modify the current properties of the object. Other tools in the menu bar,

e.g., text (marked by A), arrow, and line, let you modify and annotate figures just

like simple graphics packages do.

Activate
plot editor

Rotate plot 
in 3-D

Activate
data curser

Insert
legend

Insert
colorbar

Pan 
plot

Figure 5.1: MATLAB provides interactive plot editing tools in the Figure window
menu bar. Click on the white arrow to activate the plot editor. With the arrow
selected, you can double-click on any graphics object in the figure window to open
its properties box and edit the desired properties.

You can also activate the plot editor in the figure window by typing plotedit

at the command prompt. You can activate the property editor by typing propedit

at the command prompt. However, to make good use of the property editor, you

must have some understanding of Handle Graphics. See Section 5.3 on page 171 for

details.

5.1.5 Overlay plots

There are three different ways of generating overlay plots in MATLAB: the plot,

hold, and line commands.
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Method 1: Using the plot command to generate overlay plots

If the entire set of data is available, plot command with multiple arguments may

be used to generate an overlay plot. For example, if we have three sets of data—(x1,

y1), (x2, y2), and (x3, y3)—the command plot(x1,y1, x2,y2,’:’, x3,y3,’o’)

plots (x1, y1) with a solid line, (x2, y2) with a dotted line, and (x3, y3) as uncon-

nected points marked by small circles (o), all on the same graph (see Fig. 5.2 for

example). Note that the vectors (xi, yi) must have the same length pairwise. If the

length of all vectors is the same, then it is convenient to make a matrix of x vectors

and a matrix of y vectors and then use the two matrices as the argument of the

plot command. For example, if x1, y1, x2, y2, x3, and y3 are all column vectors

of length n, then typing X=[x1 x2 x3]; Y=[y1 y2 y3]; plot(X,Y) produces a

plot with three lines drawn in different colors. When plot command is used with

matrix arguments, each column of the second argument matrix is plotted against

the corresponding column of the first argument matrix.

Method 2: Using the hold command to generate overlay plots

Another way of making overlay plots is with the hold command. Invoking hold on

at any point during a session freezes the current plot in the graphics window. All

subsequent plots generated by the plot command are simply added to the existing

plot. The following script file shows how to generate the same plot as in Fig. 5.2 by

using the hold command.

% - Script file to generate an overlay plot with the hold command -

x = linspace(0,2*pi,100); % Generate vector x

y1 = sin(x); % Calculate y1

plot(x,y1) % Plot (x,y1) with solid line

hold on % Invoke hold for overlay plots

y2 = x; plot(x,y2,’--’) % Plot (x,y2) with dashed line

y3 = x - (x.^3)/6 + (x.^5)/120; % Calculate y3

plot(x,y3,’o’) % Plot (x,y3) as pts. marked by ’o’

axis([0 5 -1 5]) % Zoom in with new axis limits

hold off % Clear hold command

The hold command is useful for overlay plots when the entire data set to be

plotted is not available at the same time. You should use this command if you

want to keep adding plots as the data becomes available. For example, if a set of

calculations done in a for loop generates vectors x and y at the end of each loop

and you would like to plot them on the same graph, hold is the way to do it.

Method 3: Using the line command to generate overlay plots

The line is a low-level graphics command used by the plot command to generate

lines. Once a plot exists in the graphics window, additional lines may be added by

using the line command directly. The line command takes a pair of vectors (or a

triplet in 3-D) followed by parameter name/parameter value pairs as arguments:
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>> t=linspace(0,2*pi,100);           % Generate vector t         
>> y1=sin(t);  y2=t;                 % Calculate y1, y2, y3  
>> y3=t-(t.^3)/6+(t.^5)/120;       
>> plot(t,y1,t,y2,’--’,t,y3,’o’)     % Plot (t,y1) with solid line
                                     %- (t,y2) with dashed line and
                                     %- (t,y3) with circles
>> axis([0 5 -1 5])                  % Zoom in with new axis limits
>> xlabel(’t’)                       % Put x-label
>> ylabel(’Approximations of sin(t)’)% Put y-label
>> title(’Fun with sin(t)’)          % Put title
>> text(3.5,0,’sin(t)’)              % Write ’sin(t)’ at point (3.5,0)
>> gtext(’Linear approximation’)       
>> gtext(’First 3 terms’) 
>> gtext(’in Taylor series’) 

gtext writes the specified string at a 
location clicked with the mouse in the 
graphics window.  So after hitting return
at the end of each gtext         command,  go to 
the graphics window and click a location.
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Figure 5.2: Example of an overlay plot along with examples of xlabel, ylabel,

title, axis, text, and gtext commands. The three lines plotted are y1 =

sin t, y2 = t, and y3 = t− t3

3! + t5

5! .
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line(xdata, ydata, ParameterName, ParameterValue)

This command simply adds lines to the existing axes. For example, the overlay plot

created by the previous script file could also be created with the following script file,

which uses the line command instead of the hold command. As a bonus to the

reader, we include an example of the legend command (see Section 5.1.2, page 143).

% -- Script file to generate an overlay plot with the line command --

% ------------------

% First, generate some data

t = linspace(0,2*pi,100); % Generate vector t

y1 = sin(t); % Calculate y1, y2, y3

y2 = t;

y3 = t - (t.^3)/6 + (t.^5)/120;

% Now, plot the three lines

plot(t,y1) % Plot (t,y1) with (default) solid line

line(t,y2,’linestyle’,’--’) % Add line (t,y2) with dashed line and

line(t,y3,’marker’,’o’,... % Add line (t,y3) plotted with circles--

’linestyle’, ’none’) % but no line

% Adjust the axes

axis([0 5 -1 5]) % Zoom in with new axis limits

% Dress up the graph

xlabel(’t’) % Put x-label

ylabel(’Approximations of sin(t)’)

% Put y-label

title(’Fun with sin(t)’) % Put title

legend(’sin(t)’,’linear approx.’,’fifth-order approx.’)

% add legend

The output generated by the preceding script file is shown in Fig. 5.3. After

generating the plot, click and hold the mouse on the legend rectangle and see if

you can drag the legend to some other position. Alternatively, you could specify

an option in the legend command to place the legend rectangle in any of the four

corners of the plot. See the on-line help on legend.

5.1.6 Using subplot for Multiple Graphs

If you want to make a few plots and place the plots side by side (not overlay), use

the subplot command to design your layout. The subplot command requires three

integer arguments:

subplot(m,n,p)

Subplot divides the graphics window into m × n subwindows and puts the plot

generated by the next plotting command into the pth subwindow, where the sub-

windows are counted row-wise. Thus, the command subplot(2,2,3), plot(x,y)
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sin(t)           
linear approx.   
fifth-order approx.
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Figure 5.3: Example of an overlay plot produced by using the line command. The
legend is produced by the legend command. See the script file for details.

divides the graphics window into four subwindows and plots y versus x in the third

subwindow, which is the first subwindow in the second row. For an example, see

Fig. 5.7 on page 165.
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5.1.7 Specialized 2-D plots

There are many specialized graphics functions for 2-D plotting. They are used as

alternatives to the plot command we have just discussed. There is a whole suite

of ez plotter functions, such as ezplot, ezpolar, ezcontour, that are truly easy

to use. See Section 3.8 for a discussion and examples of these functions.

Here, we provide a list of other functions commonly used for plotting x–y data: For on-line help

type:

help graph2d

help specgraph
area creates a filled area plot,

bar creates a bar graph,

barh creates a horizontal bar graph,

comet makes an animated 2-D plot,

compass creates arrow graph for complex numbers,

contour makes contour plots,

contourf makes filled contour plots,

errorbar plots a graph and puts error bars,

feather makes a feather plot,

fill draws filled polygons of specified color,

fplot plots a function of a single variable,

hist makes histograms,

loglog creates plot with log scale on both the x-axis and the y-axis,

pareto makes pareto plots,

pcolor makes pseudocolor plot of a matrix,

pie creates a pie chart,

plotmatrix makes a scatter plot of a matrix,

plotyy makes a double y-axis plot,

polar plots curves in polar coordinates,

quiver plots vector fields,

rose makes angled histograms,

scatter creates a scatter plot,

semilogx makes semilog plot with log scale on the x-axis,

semilogy makes semilog plot with log scale on the y-axis,

stairs plots a stair graph, and

stem plots a stem graph.

On the following pages, we show examples of these functions. The commands

shown in the middle column produce the plots shown in the right column. There are

several ways you can use these graphics functions and many of them take optional

arguments. The following examples should give you a basic idea of how to use these

functions and what kind of plot to expect from them. For more information on any

of these functions, see the on-line help.



150 Graphics

Function Example Script Output

fplot

f(t) = t sin t, 0 ≤ t ≤ 10π

fplot(’x.*sin(x)’,[0 10*pi])

Note that the function to be
plotted must be written as
a function of x.
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semilogx

x = e−t, y = t, 0 ≤ t ≤ 2π

t = linspace(0,2*pi,200);

x = exp(-t); y = t;

semilogx(x,y), grid
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semilogy

x = t, y = et, 0 ≤ t ≤ 2π

t = linspace(0,2*pi,200);

semilogy(t,exp(t))

grid

0 1 2 3 4 5 6 7100

101

102
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loglog

x = et, y = 100 + e2t, 0 ≤ t ≤ 2π

t = linspace(0,2*pi,200);

x = exp(t);

y = 100 + exp(2*t);

loglog(x,y), grid

100 101 102 103
102

103

104

105

106
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Function Example Script Output

polar

r2 = 2 sin 5t, 0 ≤ t ≤ 2π

t = linspace(0,2*pi,200);

r = sqrt(abs(2*sin(5*t)));

polar(t,r)
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fill

r2 = 2 sin 5t, 0 ≤ t ≤ 2π

x = r cos t, y = r sin t

t = linspace(0,2*pi,200);

r = sqrt(abs(2*sin(5*t)));

x = r.*cos(t);

y = r.*sin(t);

fill(x,y,’c’),

axis(’square’)
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bar

r2 = 2 sin 5t, 0 ≤ t ≤ 2π

y = r sin t

t = linspace(0,2*pi,200);

r = sqrt(abs(2*sin(5*t)));

y = r.*sin(t);

bar(t,y)

axis([0 pi 0 inf]);
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errorbar

fapprox = x− x3

3!
, 0 ≤ x ≤ 2

error = fapprox − sinx

x = 0:.1:2;

aprx2 = x - x.^3/6;

er = aprx2 - sin(x);

errorbar(x,aprx2,er)
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Function Example Script Output

barh

World population by continents.

cont = char(’Asia’,’Europe’,’Africa’,...

’N. America’,’S. America’);

pop = [3332;696;694;437;307];

barh(pop)

for i=1:5,

gtext(cont(i,:));

end

xlabel(’Population in millions’)

Title(’World Population (1992)’,

’fontsize’,18) 0 500 1000 1500 2000 2500 3000 3500
Population in millions

1
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World Population (1992)

Asia      
Europe    

Africa    

N. America

S. America

plotyy

y1 = e−x sinx, 0 ≤ t ≤ 10

y2 = ex

x = 1:.1:10;

y1 = exp(-x).*sin(x);

y2 = exp(x);

Ax = plotyy(x,y1,x,y2);

hy1 = get(Ax(1),’ylabel’);

hy2 = get(Ax(2),’ylabel’);

set(hy1,’string’,’e^-x sin(x)’);

set(hy2,’string’,’e^x ’); 1 2 3 4 5 6 7 8 9 10
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# 104

area

y =
sin(x)

x
, −3π ≤ x ≤ 3π

x = linspace(-3*pi,3*pi,100);

y = -sin(x)./x;

area(x,y)

xlabel(’x’), ylabel(’sin(x)./x’)

hold on

x1 = x(46:55); y1 = y(46:55);

area(x1,y1,’facecolor’,’y’)
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pie

World population by continents.

cont = char(’Asia’,’Europe’,’Africa’,...

’N. America’,’S. America’);

pop = [3332;696;694;437;307];

pie(pop)

for i=1:5,

gtext(cont(i,:));

end

Title(’World Population (1992)’,...

’fontsize’,18)

World Population (1992)

Asia      

Europe    

Africa    

N. America

S. America
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Function Example Script Output

hist

Histogram of 50 randomly
distributed numbers between
0 and 1.

y = randn(50,1);

hist(y)

-3 -2 -1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

stem

f = e−t/5 sin t, 0 ≤ t ≤ 2π

t = linspace(0,2*pi,100);

f = exp(-.2*t).*sin(t);

stem(t,f)
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stairs

r2 = 2 sin 5t, 0 ≤ t ≤ 2π

y = r sin t

t = linspace(0,2*pi,200);

r = sqrt(abs(2*sin(5*t)));

y = r.*sin(t);

stairs(t,y)

axis([0 pi 0 inf]);

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

compass

z = cos θ + i sin θ, −π ≤ θ ≤ π
th = -pi:pi/5:pi;

zx = cos(th);

zy = sin(th);

z = zx + i*zy;

compass(z)
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Function Example Script Output

comet

y = t sin t, 0 ≤ t ≤ 10π

q = linspace(0,10*pi,2000);

y = q.*sin(q);

comet(q,y)

(It is better to see it on screen.)
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contour

z = −1

2
x2 + xy + y2

|x| ≤ 5, |y| ≤ 5.

r = -5:.2:5;

[X,Y] = meshgrid(r,r);

Z = -.5*X.^2 + X.*Y + Y.^2;

cs = contour(X,Y,Z);

clabel(cs)
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quiver

z = x2 + y2 − 5 sin(xy)

|x| ≤ 2, |y| ≤ 2.

r = -2:.2:2;

[X,Y] = meshgrid(r,r);

Z = X.^2 - 5*sin(X.*Y) + Y.^2;

[dx,dy] = gradient(Z,.2,.2);

quiver(X,Y,dx,dy,2);
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pcolor

z = x2 + y2 − 5 sin(xy)

|x| ≤ 2, |y| ≤ 2.

r = -2:.2:2;

[X,Y] = meshgrid(r,r);

Z = X.^2 - 5*sin(X.*Y) + Y.^2;

pcolor(Z), axis(’off’)

shading interp
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5.2 3-D Plots For on-line help

type:

help graph3dMATLAB provides extensive facilities for visualizing 3-D data. In fact, the built-in

colormaps may be used to represent the fourth dimension. The facilities provided

include built-in functions for plotting space curves, wireframe objects, and shaded

surfaces; generating contours automatically; displaying volumetric data; specifying

light sources; interpolating colors and shading; and even displaying images. Typing

help graph3d in the command window gives a list of functions available for general

3-D graphics. Here is a list of commonly used functions other than those from the

ez-stable, such as ezsurf, ezmesh, ezplot3, discussed in Section 3.8.

plot3 plots curves in space,

stem3 creates discrete data plot with stems in 3-D,

bar3 plots 3-D bar graph,

bar3h plots 3-D horizontal bar graph,

pie3 makes 3-D pie chart,

comet3 makes animated 3-D line plot,

fill3 draws filled 3-D polygons,

contour3 makes 3-D contour plots,

quiver3 draws vector fields in 3-D,

scatter3 makes scatter plots in 3-D,

mesh draws 3-D mesh surfaces (wire-frame),

meshc draws 3-D mesh surfaces along with contours,

meshz draws 3-D mesh surfaces with reference plane curtains,

surf creates 3-D surface plots,

surfc creates 3-D surface plots along with contours,

surfl creates 3-D surface plots with specified light source,

trimesh mesh plot with triangles,

trisurf surface plot with triangles,

slice draws a volumetric surface with slices,

waterfall creates a waterfall plot of 3-D data,

cylinder generates a cylinder,

ellipsoid generates an ellipsoid, and

sphere generates a sphere.

Among these functions, plot3 and comet3 are the 3-D analogs of plot and

comet commands mentioned in the 2-D graphics section. The general syntax for

the plot3 command is

plot3(x, y, z, ’style-option’)

This command plots a curve in 3-D space with the specified line style. The argument

list can be repeated to make overlay plots, just the same way as with the plot

command. A catalog of these functions with example scripts and the corresponding

output is given on pages 159–163. Because the example scripts use a few functions

that we discuss in Section 5.2.1, we postpone the catalog until then.
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Plots in 3-D may be annotated with functions already mentioned for 2-D plots—

xlabel, ylabel, title, text, grid, etc., along with the obvious addition of

zlabel. The grid command in 3-D makes the 3-D appearance of the plots better,

especially for curves in space (see Fig. 5.7 for example).

5.2.1 Mesh and surface plots

The functions for plotting meshes and surfaces mesh and surf, and their various

variants meshz, meshc, surfc, and surfl, take multiple optional arguments, the

most basic form being mesh(Z) or surf(Z), where Z represents a matrix. Usually

surfaces are represented by the values of z-coordinates sampled on a grid of (x, y)

values. Therefore, to create a surface plot we first need to generate a grid of (x, y)

coordinates and find the height (z-coordinate) of the surface at each of the grid

points. Note that you need to do the same thing for plotting a function of two

variables. MATLAB provides a function meshgrid to create a grid of points over a

specified range.

The function meshgrid

Suppose we want to plot a function z = x2 − y2 over the domain 0 ≤ x ≤ 4 and

−4 ≤ y ≤ 4. To do so, we first take several points in the domain, say 25 points, as

shown in Fig. 5.4. We can create two matrices X and Y , each of size 5 × 5, and

write the xy-coordinates of each point in these matrices. We can then evaluate z

with the command z=X.^2-Y.^2;. Creating the two matrices X and Y is much

easier with the meshgrid command:

rx = 0:4; % create a vector rx=[0 1 2 3 4]

ry = -4:2:4; % create a vector ry=[-4 -2 0 2 4]

[X,Y] = meshgrid(rx,ry); % create a grid of 25 points and

%- store their coordinates in X and Y.

The preceding commands generate the 25 points shown in Fig. 5.4. All we need

to generate is two vectors, rx and ry, to define the region of interest and distribution

of grid points. Also, the two vectors need not be either same-sized or linearly spaced

(although, most of the time, we take square regions and create grid points equally

spaced in both directions; see examples on pages 159–163). To be comfortable with

3-D graphics, you should understand the use of meshgrid.

Back to mesh plot

When a surface is plotted with the mesh(z) (or surf(z)) command, where z is a

matrix, then the tick marks on the x-axis and the y-axis do not indicate the domain

of z but the row and column indices of the z matrix. This is the default. Typing

mesh(x,y,z) or surf(x,y,z), where x and y are vectors used by the meshgrid

command to create a grid, results in the surface plot of z with x- and y-values
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Figure 5.4: A grid of 25 points in the xy-plane. The grid can be created by the
meshgrid command: [X,Y]=meshgrid(rx,ry); where rx and ry are vectors spec-
ifying the location of grid lines along x and y axes.

shown on the x- and y-axes. The following script file should serve as an example of

how to use the meshgrid and mesh commands. Here we try to plot the surface

z =
xy(x2 − y2)

x2 + y2
, −3 ≤ x ≤ 3, −3 ≤ y ≤ 3

by computing the values of z over a 50 × 50 grid on the specified domain. The

results of the two plot commands are shown in Fig. 5.5.

%----------------------------------------------------------------------

% Script file to generate and plot the surface

% z = xy(x^2-y^2)/(x^2+y^2) using meshgrid and mesh commands.

%----------------------------------------------------------------------

x = linspace(-3,3,50); y = x; % Generate 50 element long vectors x & y

[X,Y] = meshgrid(x,y); % Create a grid over the specified domain

Z = X.*Y.*(X.^2-Y.^2)./(X.^2+Y.^2); % Calculate Z at each grid point

mesh(X,Y,Z) % Make a wire-frame surface plot of Z and

%- use x and y values on the x and y-axes

title(’Plot created by mesh’)

figure(2) % Open a new figure window

meshc(X,Y,Z),view(-55,20) % Plot the same surface along with

%- contours and show the view from

%- the specified angles

title(’Plot created by meshc’)

Surfaces created by mesh or its variants have a wire-frame appearance, whereas

surfaces created by the surf command or its variants produce a true surface-like ap-

pearance, especially when used with the shading command. There are three kinds

of shading available—shading flat produces simple flat shading, shading interp
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produces more dramatic interpolated shading, and shading faceted, the default

shading, shows shaded facets of the surface. Both mesh and surf can plot paramet-

ric surfaces with color scaling to indicate a fourth dimension. This is accomplished

by giving four matrix arguments to these commands, e.g., surf(X,Y,Z,C) where

X, Y , and Z are matrices representing a surface in parametric form and C is the

matrix indicating color scaling. The command surfl can be used to control the

light reflectance and to produce special effects with a specified location of a light

source. See on-line help on surfl for more information.
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Figure 5.5: 3-D surface plots created by mesh and meshc commands. The second
plot uses a different viewing angle to show the center of the contour lines. Note that
the surfaces do not show hidden lines (this is the default setting; it can be changed
with the hidden command).

We close this section with a catalog of popular 3-D graphics functions on the

following pages. We hope that you can use these functions for your needs simply

by following the example scripts. But we acknowledge that the meshgrid command

takes some thought to understand well.
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Function Example Script Output

plot3

Plot of a parametric space curve:

x(t) = t, y(t) = t2, z(t) = t3.

0 ≤ t ≤ 1.

t = linspace(0,1,100);

x = t; y = t.^2; z = t.^3;

plot3(x,y,z), grid

xlabel(’x(t) = t’)

ylabel(’y(t) = t2̂’)

zlabel(’z(t) = t3̂’)
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fill3

Plot of four filled polygons
with three vertices each.

X = [0 0 0 0; 1 1 -1 1;

1 -1 -1 -1];

Y = [0 0 0 0; 4 4 4 4;

4 4 4 4];

Z = [0 0 0 0; 1 1 -1 -1;

-1 1 1 -1];

fillcolor=rand(3,4);

fill3(X,Y,Z,fillcolor)

view(120,30)
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contour3

Plot of 3-D contour lines of

z = − 5

1 + x2 + y2
,

|x| ≤ 3, |y| ≤ 3.

r = linspace(-3,3,50);

[x,y] = meshgrid(r,r);

z = -5./(1 + x.^2 + y.^2);

contour3(x,y,z)
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For a colored version of these 3-D plots, please visit the companion website:
http://global.oup.com/us/companion.websites/9780190602062/graphics/,
or scan the QR code shown on the left.
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Function Example Script Output

surf

z = cosx cos y e
−
√
x2+y2

4

|x| ≤ 5, |y| ≤ 5

u = -5:.2:5;

[X,Y] = meshgrid(u, u);

Z = cos(X).*cos(Y).*...

exp(-sqrt(X.^2 + Y.^2)/4);

surf(X,Y,Z)

colormap jet
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surfc

z = cosx cos y e
−
√
x2+y2

4

|x| ≤ 5, |y| ≤ 5

u = -5:.2:5;

[X,Y] = meshgrid(u, u);

Z = cos(X).*cos(Y).*...

exp(-sqrt(X.^2 + Y.^2)/4);

surfc(Z)

view(-37.5,20)

axis(’off’)

surfl

z = cosx cos y e
−
√
x2+y2

4

|x| ≤ 5, |y| ≤ 5

u = -5:.2:5;

[X,Y] = meshgrid(u, u);

Z = cos(X).*cos(Y).*...

exp(-sqrt(X.^2 + Y.^2)/4);

surfl(Z)

shading interp

colormap copper axis off

Note: Plotting a surface with surf(X,Y,Z) shows proper values on the x-axis and the y-
axis, whereas plotting the surface with surf(Z) shows the row and column indices of matrix
Z on the x-axis and the y-axis. The same is true for other 3-D plotting commands such as
mesh and contour3. Compare the values on the x-axis and the y-axis in the first and the
last figure in this table.
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Function Example Script Output

mesh

z = − 5

1 + x2 + y2

|x| ≤ 3, |y| ≤ 3

x = linspace(-3,3,50);

y = x;

[x,y] = meshgrid(x,y);

z = -5./(1+x.^2+y.^2);

mesh(z)

colormap hsv
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meshz

z = sin2 x+ sin2 y

|x| ≤ π

2
, |y| ≤ π

2

x = linspace(-pi/2,pi/2,50);

y = x;

[x,y] = meshgrid(x,y);

z = sin(x.^2) + sin(y.^2);

meshz(x,y,z), axis tight

view(-37.5, 50)

colormap cool
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waterfall

z = − 5

1 + x2 + y2

|x| ≤ 3, |y| ≤ 3

x = linspace(-3,3,50);

y = x;

[x,y] = meshgrid(x,y);

z = -5./(1 + x.^2 + y.^2);

waterfall(z)

hidden off
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Function Example Script Output

pie3

World population by continents.

% popdata: Af,As,Eu,NA,SA

pop = [807;3701;731;481;349];

continents = {’Africa’,’Asia’,...
’Europe’,’N.America’,’S.America’};
pie3(pop,continents)

Title({’World Population’,...

’(2003)’})

World Population

61%

13%

13%
8%

6%

stem3

Discrete data plot with stems.

x = t, y = t sin(t),

z = et/10 − 1

for 0 ≤ t ≤ 6π.

t = linspace(0,6*pi,200);

x = t; y = t.*sin(t);

z = exp(t/10)-1;

stem3(x,y,z,’filled’)

0
20

1

2

10 20

3

e( t/1
0)

-1

4

15

x sin(x)

0

5

x

10

6

-10 5
-20 0

ribbon

2-D curves as ribbons in 3-D.

y1 = sin(t), y2 = e−.15t sin(t)

y3 = e−.8t sin(t)

for 0 ≤ t ≤ 5π.

t = linspace(0,5*pi,100);

y1 = sin(t);

y2 = exp(-.15*t).*sin(t);

y3 = exp(-.8*t).*sin(t);

y = [y1; y2; y3];

rib width = 0.2;

ribbon(t’,y’,rib width)

-1
20

-0.5

15 3.5

0

3

0.5

10 2.5
2

1

5 1.5
1

0 0.5



5.2 3-D Plots 163

Function Example Script Output

sphere

A unit sphere centered at the origin
and generated by three matrices x, y,
and z of size 21× 21 each.

sphere(20)

axis(’square’)

or
[x,y,z] = sphere(20);

surf(x,y,z)

axis(’square’)
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ellipsoid

An ellipsoid of radii rx = 1, ry = 2,
and rz = 0.5, centered at the origin.

cx = 0; cy = 0; cz = 0;

rx = 1; ry = 2; rz = 0.5;

ellipsoid(cx,cy,cz,rx,ry,rz)

axis(’equal’)
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cylinder

A cylinder generated by

r = sin(3π z) + 2

0 ≤ z ≤ 1, 0 ≤ θ ≤ 2π.

z = [0:.02:1]’;

r = sin(3*pi*z) + 2;

cylinder(r)

axis off

slice

Slices of the volumetric function
f(x, y, z) = cos2 x+ cos2y − z2
|x| ≤ 3, |y| ≤ 3, |z| ≤ 3 at x = −2 and
2, y = 2, and z = −2.5 and 0.

v = [-3:.2:3];

[x,y,z] = meshgrid(v,v,v);

f = (cos(x).^2 + sin(y).^2-z.^2);

xv = [-2 2.5]; yv = 2;

zv = [-2.5 0];

slice(x,y,z,f,xv,yv,zv);

The value of the function is indicated
by the color intensity.

-3
3

-2

-1

2

0

1

1

3

2

0 2

3

1-1
0

-2 -1
-2-3 -3



164 Graphics

5.2.2 View

The viewing angle of the observer is specified by the command

view(azimuth, elevation)

where azimuth and elevation are angles specified in degrees. The azimuth is the ro-

tation about the z-axis measured counterclockwise from the negative y-axis, and the

elevation is the vertical angle measured positive above the xy-plane (see Fig. 5.6).

The default values for these angles are −37.5o and 30o, respectively.

azimuth

elevation x

y

z

Figure 5.6: The viewing angles azimuth and elevation in 3-D plots.

By specifying appropriate values of the azimuth and the elevation, one can plot

the projections of a 3-D object on different 2-D planes. For example, the command

view(90,0) puts the viewer on the positive x-axis, looking straight on the yz-plane,

and thus produces a 2-D projection of the object on the yz-plane. Figure 5.7 shows

the projections obtained by specifying different view angles.

View(2) and view(3)

These are the special cases of the view command, specifying the default 2-D and

3-D views:

view(2) same as view(0,90), shows the projection in the xz-plane, and

view(3) same as view(-37.5,30), shows the default 3-D view.

The view(3) command can be used to see a 2-D object in 3-D. It may be useful

in visualizing the perspectives of different geometrical shapes. The following script

file draws a filled circle in 2-D and also views the same circle in 3-D. The output is

shown in Fig. 5.8.

% ---- script file to draw a filled circle and view it in 3D ----

theta = linspace(0,2*pi,100); % create vector theta

x = cos(theta); % generate x-coordinates

y = sin(theta); % generate y-coordinates

subplot(1,2,1) % initiate a 1 by 2 subplot
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Figure 5.7: Examples of plot3, subplot, and view. Note how the 3-D grid in the
background helps in the 3-D appearance of the space curve. The 3-D curve plot-
ted here is generated with the commands t=linspace(0,6*pi,100); x=cos(t);

y=sin(t); z=t; and then plotted as follows: (a) subplot(2,2,1), plot3(x,y,z),
(b) subplot(2,2,2), plot3(x,y,z), view(0,90), (c) subplot(2,2,3),

plot3(x,y,z), view(0,0), (d) subplot(2,2,4), plot3(x,y,z), view(90,0).
Labels and titles are added as discussed before. Although the three 2-D pictures
could be made using the plot command, this example illustrates the use of viewing
angles.
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fill(x,y,’g’); axis(’square’); % plot the filled circle

subplot(1,2,2) % go to the 2nd subplot

fill(x,y,’g’); axis(’square’); % plot the same circle again

view(3) % view the 2-D circle in 3-D
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Figure 5.8: Example of view(3) to see a 2-D object in 3-D.

5.2.3 Rotate view

MATLAB provides more versatile and easier utilities for manipulating the view

angle of a 3-D plot. Simply click on the rotate in 3D button located in the toolbar

of the figure window (see Fig. 5.1 on page 144) and use your mouse to rotate the

view. Alternatively, you can use a utility function called rotate3d. Simply turn it

on with rotate3d on and rotate the view with your mouse. There are also some

sophisticated camera functions that let you specify the camera view angle, zoom,

roll, pan, etc. See the on-line help on graph3D.

5.2.4 Vector field and volumetric plots

One of the most crucial needs of visualization in scientific computation is for data

that is essentially volumetric, i.e., defined over a 3-D space. For example, we may
For on-line help

type:

help vissuite have temperature or pressure defined over each (x, y, z) triple in a bounded 3-D

space. How do we display this data graphically? If we have a function z = f(x, y)

defined over a finite region of the xy-plane, we can display z or f as a 3-D surface.

But we have f(x, y, z)! So, we need a 4-D hypersurface. That is the basic problem.

We display volumetric data by slicing it along several planes in 3-D and plotting

the data on those planes, either with graded color maps or with contours. Such

displays are still an area of active research. However, we can do fairly well with the

tools currently available. One of the most common applications is in the area of

3-D vector fields. A vector field defines a vector quantity as a function of the space
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variables (x, y, z). Fortunately, in this case we can display the data (the vector) with

an arrow drawn at each (x, y, z) triple, with the magnitude of the vector represented

by the length of the arrow, and the direction represented by the orientation of the

arrow. This concept is used extensively in dynamical systems in various ways.

MATLAB provides extensive tools for visualizing vector fields and volumetric

data. Unfortunately, these tools are beyond the scope of this book. Therefore, we

merely mention the tools here and give examples of only the “most likely to be

used” tools.

Plotting vector fields

The plotting functions available in MATLAB for vector field visualization include

quiver, quiver3, stream2, stream3, streamline, streamtube, streamribbon,

streamslice, streamparticles, coneplot, divergence, curl, etc.

If u(x, y) and v(x, y) are given as vector components in x- and y-directions,

respectively, then the vector field can be easily drawn with quiver (quiver3 in

3-D). An example of quiver appears on page 154 in the table of 2-D plots. The

stream functions are an extension of the same concept; they draw streamlines or

trajectories from user-specified points in the specified vector field. This suite of

functions has been a welcome addition in MATLAB (version 6 onward).

The function streamline is useful for drawing solution trajectories in 2-D and

3-D vector fields defined by ODEs. You need not solve the ODEs!

Example: Let

ẋ = y + x− x(x2 + y2) and

ẏ = −x+ y − y(x2 + y2).

These two ODEs define a vector field (u ≡ ẋ and v ≡ ẏ). Let us use streamline to

draw a few solution trajectories starting from various points in the xy-plane (initial

conditions in the phase plane). The general syntax of streamline is

streamline(x,y,z, u,v,w, x0,y0,z0)

where (x, y, z) are 3-D matrices of grid points where the vector field components

(u, v, w) are specified, and (x0, y0, z0) are starting points for the streamlines to be

drawn. Here is a script file that draws the streamlines for our 2-D vector field.

% STREAMLINE2D example of using streamline for 2-D vector field

% The vector field is given by two ODEs

% -------------------------------------

% create grid points in 2-D

v = linspace(-2,2,50);

[X,Y] = meshgrid(v);

% define vector field

U = Y + X - X.*(X.^2 + Y.^2);

V = Y - X - Y.*(X.^2 + Y.^2);

% specify starting points for streamlines

x0 = [-2 -2 -2 -2 -.5 -.5 .5 .5 2 2 2 2 -.01 -.01 .01 .01];
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y0 = [-2 -.5 .5 2 -2 2 -2 2 -2 -.5 .5 2 -.01 .01 -.01 .01];

% draw streamlines

streamline(X,Y,U,V,x0,y0)

axis square

The result obtained is shown in Fig. 5.9.

-2 -1.5  -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 5.9: Plot obtained by executing the script file streamline2D.

Plotting volumetric data

The functions available in MATLAB for volumetric data visualization include slice,

slicecontour, isosurface, isonormal, isocaps, isocolors, subvolume, reducevolume,

smooth3, reducepath, etc. See on-line help for more details.

5.2.5 Interpolated surface plots

Many times, we get data (usually from experiments) in the form of (x, y, z) triples

and we want to fit a surface through the data. Thus, we have a vector z that con-

tains the z-values corresponding to irregularly spaced x- and y-values. Here, we do

not have a regular grid, as created by meshgrid, and we do not have a matrix Z

that contains the z-values of the surface at those grid points. Therefore, we have

to fit a surface through the given triplets (xi, yi, zi). The task is much simpler than

it seems. MATLAB provides a function, griddata, that does this interpolation for

us. The general syntax of this function is

[Xi,Yi,Zi] = griddata(x,y,z,xi,yi,method)

where x, y, z are the given data vectors (nonuniformly spaced), xi and yi are the
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user-prescribed points (hopefully, uniformly spaced) at which zi are computed by

interpolation, and method is the choice for the interpolation algorithms. The algo-

rithms available are nearest, linear, cubic, and v4. See the on-line documentation

for a description of these methods.

As an example, let us consider 50 randomly distributed points in the xy-plane,

in the range −1 < x < 1 and −1 < y < 1. Let the z-values at these points be given

by z = 3/(1 + x2 + y2). Thus, we have three vectors of length 50 each. The data

points are shown in Fig. 5.10 using the scatter3 plot. Now, let us fit a surface

through these points:
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Figure 5.10: Nonuniformly distributed data points (x, y, z).

% SURFINTERP: script file to generate an interpolated surface

% Given vectors x, y, and z, generate data matrix Zi from

% interpolation to fit a surface through the data

% -----------------------------------------------------------

xv = 2*rand(1,100)-1; % this is the given x

yv = 2*rand(1,100)-1; % this is the given y

zv = 3./(1 + xv.^2 + yv.^2); % this is the given z

scatter3(xv,yv,zv) % show data as stem plot

xi = linspace(-1,1,30); % create uniformly spaced xi

yi = xi’; % create uniformly spaced yi

% note that yi is a column



170 Graphics

[Xi,Yi,Zi] = griddata(xv,yv,zv,xi,yi,’v4’);

% interpolate surface using

% v4 (MATLAB 4 griddata) method

surf(Xi,Yi,Zi) % plot the interpolated surface

The interpolated surface is shown in Fig. 5.11.
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Figure 5.11: The interpolated surface.
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5.3 Handle Graphics For on-line help

type:

help graphicsYou need not learn or understand Handle Graph-
ics to do most of the plotting an average person
needs. If you want extra-detailed control of your
graph appearance or want to do animation (be-
yond comet plots), you might want to learn Han-
dle Graphics. This is NOT a topic for beginners.

A line is a graphics object. It has several properties—line style, color, thickness,

visibility, etc. Once a line is drawn on the graphics screen, it is possible to change

any of its properties later. Suppose you draw several lines with pencil on a paper. If

you want to change one of the lines, you must first find the line you want to change

and then change what you do not like about it. On the graphics screen, a line may

be one among several graphics objects (e.g., axes, text, labels). So how do you get

hold of a line? You get hold of a line by its handle.

What is a handle? MATLAB assigns a floating-point number to every object

in the figure window (including invisible objects), and it uses this number as an

address or name for the object in the figure. This number is the handle of the

object.

Once you get hold of the handle, you can access all properties of the object.

In short, the handle identifies the object and the object brings with it the list

of its properties. In programming, this approach of defining objects and their

properties is called object-oriented programming. The advantage it offers is that you

can access individual objects and their properties and change any property of an

object without affecting other properties or objects. Thus, you get complete control

over graphics objects. MATLAB’s entire system of object-oriented graphics and its

user controllability is Handle Graphics. Here, we briefly discuss this system and its

usage, but we urge the more interested reader to consult the on-line documentation

on graphics for more details.

The key to understanding and using the Handle Graphics system is to know how

to get the handles of graphics objects and how to use handles to get and change

properties of the objects. Not all graphics objects are independent (for example,

the appearance of a line depends on the current axes in use), and a certain property

of one may affect the properties of the others. It is, therefore, important to know

how the objects are related.

5.3.1 The object hierarchy

Graphics objects follow a hierarchy of parent–child relationship. The following tree

diagram shows the hierarchy.

It is important to know this structure for two reasons:
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The Graphics Screen
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1. It shows you which objects will be affected if you change a default property

value at a particular level.

2. It tells you at which level you can query for handles of which objects.

5.3.2 Object handles

Object handles are unique identifiers associated with each graphics object. These

handles have a floating-point representation. Handles are created at the time

of creation of the object by graphics functions such as plot(x,y), contour(z),

line(z1,z2), and text(xc,yc,’Look at this’).

Getting object handles

There are two ways of getting hold of handles:

1. By creating handles explicitly at the object-creation-level commands (that is,

you can make a plot and get its handle at the same time):

hl = plot(x,y,’r-’) returns the handle of the line to hl, and

hxl = xlabel(’Angle’) returns the handle of the x-label to hxl.

2. By using explicit handle-returning functions:

gcf gets the handle of the current figure.

Example: hfig = gcf; returns the handle of the

current figure in hfig.

gca gets the handle of the current axes.

Example: haxes = gca; returns the handle of the

current axes in haxes.

gco gets the handle of the current object.

Handles of other objects, in turn, can be obtained with the get command. For

example, hlines=get(gca,’children’) returns the handles of all children of

the current axes in a column vector hlines. The function get is used to get a



5.3 Handle Graphics 173

property value of an object, specified by its handle, in the following command

form:

get(handle,’PropertyName’).

For an object with handle h, type get(h) to get a list of all property names

and their current values.

Examples:

hl = plot(x,y) plots a line and returns the handle hl

of the plotted line,

get(hl) lists all properties of the line and their values,

get(hl,’type’) shows the type of the object (e.g., line), and

get(hl,’linestyle’) returns the current line style of the line.

For more information on get, see the on-line help.

5.3.3 Object properties

Every graphics object on the screen has certain properties associated with it. For

example, the properties of a line include type, parent, visible, color, linestyle,

linewidth, xdata, ydata, etc. Similarly, the properties of a text object, such as

xlabel or title, include type, parent, visible, color, fontname, fontsize,

fontweight, string, etc. Once the handle of an object is known, you can see the

list of its properties and their current values with the command get(handle). For

example, see Fig. 5.12 for the properties of a line and their current values.

There are some properties common to all graphics objects. These properties are

children, clipping, parent, type, userdata, and visible.

Setting property values

You can see the list of properties and their values with the command set(handle).

Any property can be changed by the command

set(handle, ’PropertyName’, ’PropertyValue’)

where PropertyValue may be a character string or a number. If PropertyValue is a

string, then it must be enclosed within single quotes.

Figure 5.12 shows the properties and property values of a line.

Now let us look at an example.

Example: We create a line along with an explicit handle and then use the set

command to change the line style, its thickness, and some of the data. See page 175.
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>> t = linspace(0,pi,50);

>> hL = line(t,sin(t));

>> get(hL);

 Color = [0 0 1]
 EraseMode = normal
 LineStyle = -
 LineWidth = [0.5]
 Marker = none
 MarkerSize = [6]
 MarkerEdgeColor = auto
 MarkerFaceColor = none
 XData = [ (1 by 50) double array]
 YData = [ (1 by 50) double array]
 

Create a line with handle hL.

Query the line’s properties and 
their current values with the 
get command.

.

.

.

>> set(hL)

 Color
 EraseMode: [ {normal} | background | xor | none ]
 LineStyle: [ {-} | -- | : | -. | none ]
 LineWidth
 Marker: [ + | o | * | . | x | square | diamond ..
 MarkerSize
 MarkerEdgeColor: [ none | {auto} ] -or- a ColorSpec.
 MarkerFaceColor: [ {none} | auto ] -or- a ColorSpec.
 XData
 YData
 ZData
.
.
.

Query the line’s properties that
can be set and the available 
options.

(many more properties follow)

(many more properties follow)

Figure 5.12: Example of creating a line with an explicit handle and finding the
properties of the line, along with their current values.
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Example Script Output

Create a simple line plot and assign
its handle to hL.

t = linspace(0,pi,50);

x = t.*sin(t);

hL = line(t,x);
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Change the line style to dashed.

set(hL,’linestyle’,’--’)
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Change the line thickness.

set(hL,’linewidth’,3,’marker’,’o’)
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Change the values of some y-coordinates
by changing data points.

yvec = get(hL,’ydata’);

yvec(15:20) = 0;

yvec(40:45) = 0;

set(hL,’ydata’,yvec)
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5.3.4 Modifying an existing plot

Even if you create a plot without explicitly creating object handles, MATLAB

creates handles for each object on the plot. If you want to modify any object,

you have to first get its handle. Here is where you need to know the parent–child

relationship among several graphics objects. The following example illustrates how

to get the handle of different objects and use the handles to modify the plot.

We take Fig. 5.2 on page 146 and use the aforementioned Handle Graphics

features to modify the figure. The following script file is used to change the plot

in Fig. 5.2 to the one shown in Fig. 5.13. You may find the following script file

confusing because it uses a vector of handles, hline, and accesses different elements

of this vector, without much explanation. Hopefully, your confusion will be cleared

after you read the section on understanding a vector of handles. [Note: Before using

the following commands, you must execute the commands shown in Fig. 5.2.]

h = gca; % get the handle of the current axes

set(h,’box’,’off’); % throw away the enclosing box frame

hline = get(h,’children’); % get the handles of children of axes

%- Note that hline is a vector of

%- handles because h has many children

set(hline(7),’linewidth’,4) % change the line width of the 1st line

set(hline(6),’visible’,’off’) % make the ’lin. approx’ line invisible

delete(hline(3)) % delete the text ’linear approximation’

hxl = get(h,’xlabel’); % get the handle of xlabel

set(hxl,’string’,’t (angle)’) % change the text of xlabel

set(hxl,’fontname’,’times’) % change the font of xlabel

set(hxl,’fontsize’,20,’fontweight’,’bold’)

% change the font-size & font-weight
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Figure 5.13: Example of manipulation of a figure with Handle Graphics. This figure
is a result of executing the preceding script file after generating Fig. 5.2.
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Understanding a vector of handles

In the previous script file, you may perhaps be confused about the use of the handle

hline. The command, hline=get(h,’children’), gets the handles of all the chil-

dren of the current axes (specified by handle h) in a column vector hline. The vector

hline has seven elements—three handles for the three lines and four handles for the

four text objects (created by text and gtext commands). So, how do we know

which handle is for which line or which text? The command get(hline(i),’type’)

lists the type of the object whose handle is hline(i). The confusion is not clear yet.

What if hline(5), hline(6), and hline(7) are all lines? How do we know which

handle corresponds to which line? Once we know the type of the object, we can

identify its handle, among several similar object handles, by querying a more dis-

tinctive property of the object, such as linestyle for lines and string for text

objects. For example, consider the handle vector hline given earlier. Then,

get(hline(5),’marker’) returns o for the line style,

get(hline(6),’linestyle’) returns -- for the line style,

get(hline(1),’string’) returns in Taylor series for the string, and

get(hline(2),’string’) returns First 3 terms for the string.

From this example, it should be clear that the handles of children of the axes

are listed in the stacking order of the objects, i.e., the last object added goes on the

top of the stack. Thus, the elements of the handle vector correspond to the objects

in the reverse order of their creation!

Deleting graphics objects

Any object in the graphics window can be deleted without disturbing the other

objects with the command

delete(ObjHandle),

where ObjHandle is the handle of the object. We have used this command in the

script file that produced Fig. 5.13 to delete the text “linear approximation” from

the figure. We could have used delete(hline(6)) to delete the corresponding line

rather than making it invisible.

Modifying plots with PropEdit

Now that you have some understanding of Handle Graphics, object handles, and

object properties, you may like to use the point-and-click graphics editor, PropEdit.

Simply type propedit to activate the editor. All graphics objects from the active

figure window are shown, along with their properties, in the PropEdit window. You

can select a property from the list by clicking on it and then change it in the narrow

rectangle in the middle. A graphics object with a plus (+) on its left indicates that

you can double-click on it to see its children.
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5.3.5 Complete control over the graphics layout

We close this section with an example of arbitrary placement of axes and figures in

the graphics window. With Handle Graphics tools such as these, you have almost

complete control of the graphics layout. Here are two examples.

Example 1: Placing insets

The following script file shows how to create multiple axes, size them, and place

them so that they look like insets. The output appears in Fig. 5.14.

% INSETGRAPHICS: Example script for creating insets in plots

%---------------------------------------------------------------------

% Example of graphics placement with Handle Graphics

%---------------------------------------------------------------------

clf % clear figure window

t = linspace(0,2*pi); t(1)=eps; % t(1) is set to a small number

y = sin(t);

%---------------------

h1 = axes(’position’,[0.1 0.1 .8 .8]); % place axes with width .8 and

%- height .8 at coordinates (.1,.1)

plot(t,y),xlabel(’t’),ylabel(’sin t’)

set(h1,’Box’,’Off’); % Turn the enclosing box off

xhl = get(gca,’xlabel’); % get the handle of ’xlabel’ of the

%- current axes and assign to xhl

set(xhl,’fontsize’,16,’fontweight’,’bold’)

% change attributes of ’xlabel’

yhl = get(gca,’ylabel’); % do the same with ’ylabel’

set(yhl,’fontsize’,16,’fontweight’,’bold’)

h2 = axes(’position’,[0.6 0.6 .2 .2]);% place another axes on the same plot

fill(t,y.^2,’r’) % draw a filled polygon with red fill

set(h2,’Box’,’Off’);

xlabel(’t’),ylabel(’(sin t)^2’)

set(get(h2,’xlabel’),’FontName’,’Times’)

set(get(h2,’ylabel’),’FontName’,’Times’)

h3 = axes(’position’,[0.15 0.2 .3 .3]); % place yet another axes

polar(t,y./t); % make a polar plot

polarch = get(gca,’children’); % get the handle of all children

%- of the current axes

set(polarch(1),’linewidth’,3) % set the line width of the first child

%- which is the line we plotted

%----------------------
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Figure 5.14: Example of manipulation of the figure window with Handle Graphics.
Virtually anything in the figure window, including the placement of axes, can be
manipulated with Handle Graphics.

Example 2: Fun with spirals

Now that you know how to create axes, position them, and make plots in them,

let’s have some fun. How about doing some artwork with MATLAB? Place and size

the axes, take the outer box off at will, change the color of the axes, put the x-axis

on top, y-axis on the right, and so on. Let us create a spiral given by

r(θ) = e−
θ
10 , 0 ≤ θ ≤ 8π

and plot it as a filled spiral (with different color-fills) in four differently sized axes.

Go ahead, try the following script file. It produces the spirals that appear in

Fig. 5.15 (you will, of course, see the spirals in color on your screen). Note how the

same data produce progressively smaller spirals because of the size of the different

axes.

% FUNWITHSPIRALS: Script to plot 4 filled spirals in different axes

% Written by Rudra Pratap on July 7, 1997,

% last modified Nov 7, 2004.

% -------------------------

t = linspace(0,8*pi,200); % create basic data for a spiral

r = exp(-.1*t);

x = r.*cos(t);

y = r.*sin(t);
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clf % clear previous figure settings

h1 = axes(’position’,[.1,.1,.5,.5]); % first axes

fill(x,y,’g’) % first (big) spiral in green

h2 = axes(’position’,[.45,.45,.3,.3]); % second axes

fill(x,y,’b’) % second spiral in blue

set(h2,’xcolor’,’b’); % change x-axis color to blue

set(h2,’ycolor’,’b’); % change y-axis color to blue

set(h2,’xticklabel’,’ ’); % remove axis tick marks

set(h2,’yticklabel’,’ ’);

h3 = axes(’position’,[.67,.67,.2,.2]); % third axes

fill(x,y,’m’), box(’off’) % third spiral, no outer box

set(h3,’xcolor’,’m’); % change axis color to magenta

set(h3,’ycolor’,’m’);

set(h3,’xticklabel’,’ ’); % remove axis tick marks

set(h3,’yticklabel’,’ ’);

h4 = axes(’position’,[.84,.84,.1,.1]); % fourth axes

fill(x,y,’r’) % fourth spiral in red

set(h4,’color’,’y’); % change background color

set(h4,’xaxisloc’,’top’); % locate x-axis on top

set(h4,’yaxisloc’,’right’); % locate y-axis on right
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Figure 5.15: Example of manipulation of axes and its various properties.
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5.4 Fun with 3-D Surface Graphics

5.4.1 Generating a cylindrical surface

There are specialized graphics functions—cylinder, sphere, and ellipsoid—for

generating cylindrical, spherical, and ellipsoidal surfaces very easily. We can gener-

ate these surfaces even without using these specialized functions, using their math-

ematical equations. These functions make the task easier by reducing the number

of steps required in generating these surfaces. Here, we use the function cylinder

to create some interesting surfaces that also appear on the cover page of this book.

A cylinder is generated by defining a generating curve and revolving it around

the z-axis by one complete revolution to sweep the desired cylindrical surface. The

simplest case is a straight line (parallel to the z-axis) that generates a constant

radius cylinder. The generating curve can be created by defining r = f(z). For

example, let

r(z) = r0 + sin(3πz), 0 ≤ z ≤ 1.

We take r0 = 1.5 and create a cylinder with this generating curve using the following

simple code.

z = linspace(0,1,101); % take 101 points between 0 and 1

r = sin(3*pi*z)+1.5; % define the generating curve r(z)

[X,Y,Z] = cylinder(r,50); % generate surface data for the cylinder

The cylinder function automatically generates the appropriate matrices X, Y,

and Z that can be used as arguments of the surf function to plot the cylinder. So,

now we use the data to plot the cylinder with the following commands:

c = surf(X,Y,Z); % plot the cylinder; its handle is c

axis square; % set the axes to be square

view(-38.5,26); % change the viewing angle slightly

The resulting plot is shown in Fig. 5.16(a). Now, let us spruce up this graph

just a bit by changing its patch color, edge color, and transparency, and add a light

source to enhance the 3-D look.

5.4.2 Face color, transparency, and light reflection

It is amazingly simple to manipulate 3-D graphics in MATLAB. Once you have a

surface plot on the screen, you can activate the interactive plot editor by clicking

on the white arrow button on the menu bar of the figure window. Now double-click

on the object you want to edit and click on the More Properties button in the

Property Editor subwindow. You can now select and change whichever property

of the graph you like, including color of patch faces, color of edges, transparencies

(alpha) of these objects, light sources, and color schemes. We, however, recommend

that you familiarize yourself with how to change these properties using graphics

handles. It is then easy to record such changes in your code and save the code for

later use.
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Surface plotting functions, surf, surfc, and surfl, use patches to create the

surface. A patch is a 2-D graphics primitive (2-D equivalent of line) that is

defined by its edges and its face. Both the edge and the face can take any color,

set by specifying an RGB (red, green, blue) triplet or a predefined color name, and

have independent transparencies, set by their respective alpha values (a FaceAlpha

value of 1 makes the face opaque and a value of 0 makes it completely transparent).

One can also add a light source at a location of one’s choice, specify its color

and style. The most useful style perhaps is ’infinite’, which places the light

at infinity and directs light rays in the direction specified by the light ’position’.

The lighting options specify whether the light will be reflected or not. The option,

lighting phong (other options are flat, gouraud, and none) usually results in the

best rendering of reflection, especially from curved surfaces.

Here is a simple example of how to change the edge color, edge transparency,

face transparency, and lighting. We use the cylinder plotted previously with the

surf function and spruce it up with the following commands:

% Spruce up the cylinder

light(’position’,[2 -2 .1],’Style’,’infinite’); % create a light source

lighting phong; % define how the light is reflected

set(c,’facealpha’,0.8); % set the face alpha (opacity) to 80%

dark_brown = [.32 .19 .19]; % define a dark_brown color with RGB values

set(c,’edgecolor’,dark_brown); % change the edge color to dark brown

set(c,’edgealpha’,0.1); % make the edges almost transparent

set(gca,’visible’,’off’); % remove the axes and the frame

The resulting image is shown in Fig. 5.16(b). Note that the images shown here

are in grayscale (to save you money in the cost of this book) and do not really do

justice to how stunning they look in color.
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Figure 5.16: Manipulation of 3-D graphics (a) a cylinder generated with cylinder

and surf functions, and (b) the cylinder after changing the face color, edge color,
face alpha and edge alpha of the surface patches, and introducing a light source at
infinity.
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5.4.3 A little more fun with color and lighting

Let us continue just a little longer and explore the variations in face color, edge color,

and transparency. This time, let us split the cylinder in two halves (it is really easy

to do by manipulating the Z matrix) and render their surfaces differently. We first

draw the right half of the cylinder and render it coffee (with milk!) colored. Note

the manipulation of the data—columns 15 to 40 have been replaced with NaNs. Here

Z is a 101× 51 matrix. The rows represent patches along the z-axis and columns

represent the patches along the circumference. You need to figure out which columns

you want to retain to plot the part of the cylinder you desire. Of course, you can

split it right in the middle and use 3-D rotation to position the half cylinder the

way you wish to see it.

% Right half of the cylinder

clf % clear the figure window

Z1=Z; % copy the data for manipulation

Z1(:,15:40)=NaN; % set part of the data to NaN

c3=surf(X,Y,Z1); axis square; % plot Z1 to see half of the cylinder

light(’position’,[2 -2 .1],’Style’,’infinite’);

set(c3,’facecolor’,[.99 .92 .80],’facealpha’,1);

set(c3,’edgecolor’,[.32 .19 .19],’edgealpha’,0.1);

lighting phong;

set(gca,’visible’, ’off’)

view(-38.5,26);

The resulting image is shown in Fig. 5.17(a). Note that we have used a facealpha

of 1 to make the surface opaque here (there is nothing interesting to see through on

the other side). We give similar treatment to the left half of the cylinder but color

it bright golden and to make it glitter add another light source:

% Left half of the cylinder

clf; % clear the figure window

ZL=Z; % copy the data for manipulation

ZL(:,1:14)=NaN; % set part of the data to NaN

ZL(:,41:51)=NaN;

c2=surf(X,Y,ZL); axis square; % plot Z1 to see half of the cylinder

l1=light(’position’,[2 -2 .1],’Style’,’infinite’);

l2=light(’position’,[-2 2 .1],’Style’,’infinite’);

set(c2,’facecolor’,[.87 .49 0],’facealpha’,1);

set(c2,’edgecolor’,[.87 .49 0],’edgealpha’,0.1);

lighting phong;

set(gca,’visible’,’off’);

view(-38.5,26);

The image of the left half of the cylinder is shown in Fig. 5.17(b). Note the

reflection from the surface, clearly indicating light falling from two different direc-

tions.

While we are at it, let us plot the bottom half of the cylinder as well, using same

color, transparency, and light sources as those for the right half of the cylinder, but

use lighting flat to alter the reflection characteristics of the patch objects. With
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flat lighting, each patch has constant reflectance, and hence the individual patches

become more visible. The code follows (for brevity, we have omitted a few lines

from this code that you must put in for setting the light source and face color, etc.)

and the resulting image is shown in Fig. 5.17(c).

% Bottom half of the cylinder (or a ’golden onion’)

Z1=Z;

Z1(51:101,:)=NaN;

c2=surf(X,Y,Z1); axis square

% copy code for light, facecolor, etc., here from left half cylinder

lighting flat;

view(-40,20);

(b) (c)(a)

Figure 5.17: Further manipulation of 3-D graphics: the two halves of the cylinder
manipulated separately, (a) the right half of the cylinder in coffee color, with no
face transparency, (b) left half of the cylinder in golden color, with two independent
light sources, and (c) bottom half of the cylinder with lighting set to flat.

5.4.4 A word about choosing colors

Colors in MATLAB graphics are specified by their RGB values, a triple, with each

number between 0 and 1. A pure red is [1 0 0] and a yellow is [1 1 0]. There

are several popular colors predefined—blue, green, red, cyan, magenta, yellow, and

black. Thus, it is sufficient to say plot(x,y,’color’,’magenta’) rather than

plot(x,y,’color’, [1 0 1]). However, for selecting other colors, it is essential

to specify the corresponding RGB values. Now, how do you find these values? In

MATLAB’s graphics editor, you can open the color palette by clicking on color in

the list of items in the Inspector window. Select the color you like from More Colors
and click on the RGB tab to see its RGB values. These values are given as integers

that vary from 0 to 255. Note down the numbers and divide them by 255 to get

the decimal values between 0 and 1. For example, the golden color is [222 125 0],

which must be specified as [.87 .49 0] in the facecolor value while plotting the

left half of the cylinder.
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5.5 Saving and Printing Graphs For on-line help

type:

help printThe simplest way to get a hard copy of a graph is to type print in the command

window after the graph appears in the figure window. The print command sends

the graph in the current figure window to the default printer in an appropriate form.

On PCs (running Windows) and Macs, you could, alternatively, activate the figure

window (bring to the front by clicking on it) and then select print from the file

menu.

The figure can also be saved into a specified file in the PostScript (PS) or Encap-

sulated PostScript (EPS) format. These formats are available for black and white

as well as color printers. The PostScript supported includes both level 1 and level 2

PostScript. The command to save graphics to a file has the form

print -ddevicetype -options filename

where devicetype for PostScript printers can be one of the following:

devicetype Description devicetype Description

ps black-and-white PS eps black-and-white EPS
psc color PS epsc color EPS
ps2 level 2 black-and-white PS eps2 level 2 black-and-white EPS
psc2 level 2 color PS epsc2 level 2 color EPS

For example, the command

print -deps sineplot

saves the current figure in the Encapsulated PostScript file sineplot.eps. The .eps
extension is automatically generated by MATLAB.

The standard optional argument -options supported are append, epsi, Pprinter,

and fhandle. There are several other platform-dependent options. See the on-line

help on print for more information.

In addition to the PostScript devices, MATLAB supports a number of other

printer devices on UNIX and PC systems. There are device options available for

HP LaserJet, DeskJet, and PaintJet printers, DEC LN03 printers, Epson printers,

and other types of printers. See the on-line help on print to check the available

devices and options.

Other than printer devices, MATLAB can also generate a graphics file in the

following popular formats, among many others (see on-line help on print).

-dill saves file in Adobe Illustrator format,

-djpeg saves file as a JPEG image, and

-dtiff saves file as a compressed TIFF image.

The Adobe Illustrator format is quite useful if you want to dress up or modify

the figure in a way that is very difficult to do in MATLAB. Of course, you must

have access to Adobe Illustrator to be able to open and edit the saved graphs.

Figure 5.18 shows an example of a graph generated in MATLAB and then modified

in Adobe Illustrator.
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5.5.1 Saving graphs to reusable files

It is also possible to save a graphics file as a list of commands, regenerate the graph-

ics later, and modify it. To save the graphics in the currently active window, type

hgsave filename.fig

Later, you can open the file with the command open filename.fig to get the plot

back into the graphics window. The hgsave command saves the plot with its handles

and the associated data. You can also save the plot as a figure file (filename.fig)

by selecting Save or Save As... from the File menu in the graphics window. Al-

ternatively, you could use the command saveas(gcf, ’filename’,’fig’) on the

command line.

For on-line help

type:

help hgsave

help saveas There is yet another way of saving a graph in a file that can be used in MAT-

LAB to recreate the graph. You can select Create M-code from the File menu of

the graphics window. This action will create a function file, an M-file, that will

require input data to recreate the graph. Thus, the generated M-code contains all

commands necessary to create the graph but does not contain the data that was

used for the graph. This particular way of saving a graph may be useful when you

make a lot of changes to your graph using plot editor and you would like to save

the final settings for creating similar plots with possibly different data.

x

y 0

0

0

t

x=R
 cos(ω

t)

y=R sin(ωt)

Circular path

of particle
R

Figure 5.18: Example of a figure generated in MATLAB, saved in the Illustrator
format and then modified in Adobe Illustrator. The rotation and shearing of texts
was done in Illustrator (courtesy of A. Ruina).
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5.6 Animation

We all know the visual impact of animation. If you have a lot of data representing

a function or a system at several time sequences, you may wish to take advantage

of MATLAB’s capability to animate your data.

There are three types of facilities for animation in MATLAB:

1. Dynamic data plotting with built-in function comet,

2. Animating various graphics objects using Handle Graphics, and

3. Recording a series of figure screens as frames of a movie.

Now, let us look at these facilities (not in the same order) and how to use them.

5.6.1 Dynamic data plotting with Comet plot

This is the simplest and the most restricted facility to display a 2-D or 3-D line

graph as an animated plot. The command comet(x,y) plots the data in vectors x

and y with a comet moving through the data points. The trail of the comet traces

a line connecting the data points. So, rather than having the entire plot appear

on the screen at once, you can see the graph “being plotted.” This facility may be

useful in visualizing trajectories in a phase plane. For an example, see the built-in

demo on the Lorenz attractor.

5.6.2 Movies with a series of figure frames

If you have a sequence of plots that you would like to animate, use the built-in

movie facility. The basic idea is to store each figure as a frame of the movie,

with each frame stored as a column vector of a big matrix, say M , and then to

play the frames on the screen with the command movie(M). A frame is stored in a

column vector using the command getframe. For efficient storage, you should first

initialize the matrix M . The built-in command moviein is provided precisely for

this initialization, although you can do it yourself too. An example script file to

make a movie might look like this:
%--- skeleton of a script file to generate and play a movie ---

%

nframes = 36; % number of frames in the the movie

Frames = moviein(nframes); % initialize the matrix ’Frames’

for i = 1:nframes % you may have calculations here

: %- to generate data

:

x = ....; y = ....;

plot(x,y) % you may use any plotting function

Frames(:,i) = getframe; % store the current figure as a frame

end

movie(Frames,5) % play the movie Frames 5 times

You can also specify the speed (frames/second) at which you want to play the

movie (the actual speed will eventually depend on your CPU) by typing the com-

mand movie(Frames,m, fps), which plays the movie, stored in Frames, m times at

the rate of fps frames per second.
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5.6.3 Handle Graphics, the real animator

Another way, and perhaps the most versatile way, of creating animation is to use the

Handle Graphics facilities. The basic idea here is to plot an object on the screen,

get its handle, use the handle to change the desired properties of the object (most

likely its position, i.e., its coordinates in xdata and ydata), and replot the object

over a selected sequence of times or in a loop. There are two important things to

know to be able to create animation using Handle Graphics:

• The command drawnow flushes the graphics output to the screen without

waiting for the control to return to MATLAB. This is essential for showing

changes in a figure on the screen when the changes are being made inside an

environment that is internal to computation inside a loop or inside a func-

tion. The command drawnow forces the graphics command to execute in the

figure window even before the loop or the function execution is completed.

The on-line help on drawnow explains how it works. So, we use drawnow in

our animation sequence whenever we want something to change in the figure

window.

• MATLAB provides a graphic object called animated line that helps tremen-

dously in creating objects that you want to keep changing during your anima-

tion. Such lines are created with the intuitive command animatedline that

creates a handle for this special line. The syntax is:

hl1 = animatedline(X,Y, Name, Value)

where hl1 is the handle of the created line, X and Y are the coordinates,

possibly arrays, that define the line, and Name and Value are the name-value

pairs that define the properties of the line, such as its color, line width, style,

etc. There are two helper functions that make the animated line animate:

addpoints: adds new points to a line specified by its handle, possibly in a

loop.

Example: addpoints(hl1, xnew, ynew);

clearpoints: clears all points associated with the handle given as the argu-

ment.

Example: clearpoints(hl1) clears all points of the line hl1.

In a sequence of four examples to follow, we show how these three basic commands—

animatedline, addpoints, and clearpoints—can be used together to create sim-

ple and yet meaningful animations. We must mention here that there is another use-

ful command, getpoints, that you can use to get the coordinates of points that de-

fine the line you are querying with this command (e.g., [x1,y1]=getpoints(hl1)).

Now let us look at some examples that illustrate the use of Handle Graphics in

animation.
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Example 1: A bead goes around a circular path

The basic idea is to first calculate various positions of the bead along the circular

path, draw the bead as an animated line (actually just a point) at the initial position

and create its handle, and then use the handle to add (using addpoints) the x- and

y-coordinates of the new bead position to the line and remove the old position (using

clearpoints) inside a loop that cycles through all positions (see Fig. 5.19). It is

a simple idea and the implementation is straightforward. Try the following script

file.

% Script file for animating the circular motion of a bead

% -------------------------------------------------------

clf

theta=linspace(0,2*pi,100);

x=cos(theta); % generate x and y vectors

y=sin(theta); % of the bead along the path

hbead = animatedline(’Marker’,’o’,... % create a handle for the bead

’MarkerSize’,8);

axis([-1 1 -1 1]); axis(’square’); % create axis

for k=1:length(x) % cycle through all positions

clearpoints(hbead); % clear previous bead

addpoints(hbead,x(k),y(k)); % draw new bead

drawnow % show the action on the screen

end
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Figure 5.19: A bead goes on a circular path.
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Example 2: The bead going around a circular path leaves its trail

In Example 1, the bead goes on the circular path, but it may not be obvious that

it traverses a circle. To make it clear, we can make the bead leave a trail as it

moves. For this purpose, we basically draw the bead twice, once as a bead (with

bigger marker size) and once as a trail at each location (see Fig. 5.20). We add

and remove points to the bead as in the previous example but only add points to

the trail so that all previous appearances of the trail remain on the screen as

the bead moves and thus create a trail of the bead.

% Script file for animating the circular motion of a bead. As the

% bead moves, it leaves a trail behind it.

% ---------------------------------------------------------------

clf; % clear any previous figure

theta=linspace(0,2*pi,100);

x=cos(theta); % generate x and y vectors

y=sin(theta); % of the bead along the path

hbead = animatedline(’Marker’,’o’,... % create handle for the bead

’MarkerSize’,8);

htrail = animatedline(’Marker’,’.’); % create handle for the trail

axis([-1 1 -1 1]); axis(’square’); % Set axis limits and a square axis

for k=1:length(x) % cycle through all positions

clearpoints(hbead); % clear previous bead

addpoints(htrail,x(k),y(k)); % draw new trail point

addpoints(hbead,x(k),y(k)); % draw new bead

drawnow % show the action on the screen

end

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Bead
Trail

Path

Figure 5.20: A bead goes on a circular path and leaves a trail behind it.
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Example 3: A bar pendulum swings in 2-D

Here is a slightly more complicated example. It involves animation of the motion

of a bar pendulum governed by the ODE θ̈ + sin θ = 0. Now that you are com-

fortable with defining graphics objects and using animiatedline, etc., the added

complication of solving a differential equation should not be too hard.

% ----- Script file to animate a bar pendulum --------------

clf % clear figure

data = [0 0; -1.5 0]; % coordinates of endpoints of the bar

phi = 0; % initial orientation

R = [cos(phi) -sin(phi); sin(phi) cos(phi)]; % rotation matrix

data = R*data; % rotated coordinates of endpoints

axis([-2 2 -2 2]) % set axis limits

axis(’equal’)

% ----- Define the objects called bar, hinge, and path.

bar = animatedline(’LineWidth’,3); % create handle for bar

hinge = animatedline(’Marker’,’o’,’MarkerSize’,10); % create handle for hinge

path = animatedline(’Marker’,’.’); % create handle for path

% ----- Initialize object positions ---------

addpoints(hinge,0,0); % draw hinge

addpoints(bar,data(1,:),data(2,:)) % bar in initial position

addpoints(path,[],[]); % initialize path

theta = pi-pi/1000; % initial angle

thetadot = 0; % initial angular speed

dt = .02; tfinal = 50; t = 0; % time step, initial and final time

%------Euler’s method for numerical integration

while(t<tfinal);

t = t+dt;

theta = theta + thetadot*dt; % update angular position

thetadot = thetadot-sin(theta)*dt; % find new angular speed

R = [cos(theta) -sin(theta); sin(theta) cos(theta)]; % update rotation matrix

datanew = R*data; % update pendulum end coordinates

%---- change the property values of the objects: path and bar.

clearpoints(bar); % clear previous bar positions

addpoints(path,datanew(1,1),datanew(2,1)); % draw new path point

addpoints(bar,datanew(1,:),datanew(2,:)) % draw new bar position

drawnow;

end
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Example 4: The bar pendulum swings, and other data are displayed

Now here is the challenge. If you can understand the following script file, you are

in good shape! You are ready to do almost any animation. The following example

divides the graphics screen in four parts, shows the motion of the pendulum in one

part, shows the position of the tip in the second part, plots the angular displacement

θ in the third part, and plots the angular speed θ̇ in the fourth part (see Fig. 5.21).

There are four animations occurring simultaneously. Try it! There is an intentional

bug in one of the four animations. If you start the pendulum from the vertical

upright position with a non-zero initial angular speed (you will need to change the

thetadot=0 statement inside the program for this), then you should see the bug.

Go ahead, find the bug and fix it.

%----- script file to animate a bar pendulum and the data ----------

% get basic data for animation

% ask the user for initial position

clf; % clear figure window

disp(’Please specify the initial angle from the’)

disp(’vertical upright position.’)

disp(’ ’)

offset=input(’Enter the initial angle now: ’); % ask the user for time

% of simulation

tfinal=input(’Please enter the duration of simulation: ’);

theta=pi-offset; % initial angle

thetadot=0; % initial angular speed

dt=.1; % time step

t=0; % initial time

tf=tfinal; % final time

clf % clear figure

h1=axes(’position’,[0.55 .1 .4 .3]); % create new axes

axis([0 tf -4 4]); % set axis limits

xlabel(’time’),ylabel(’displacement’)

Displ=animatedline(’Marker’,’.’); % Handle for Displ marker

addpoints(Displ,[],[]); % initialize Displ

h2=axes(’position’,[0.55 .55 .4 .3]); % create another set of axes

axis([0 tf -4 4]); % set axis limits

xlabel(’time’),ylabel(’velocity’)

Vel=animatedline(’Marker’,’.’); % Handle for Velocity marker

addpoints(Vel,[],[]); % initialize Vel

h3=axes(’position’,[.1 .1 .4 .4]); % create another set of axes

axis([-pi pi -4 4]); % set axis limits

axis(’square’)
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Phase=animatedline(’Marker’,’o’,... % Handle for Phase Marker

’MarkerSize’,5);

addpoints(Phase,[],[]); % initialize Phase

h4=axes(’position’,[.1 .55 .4 .4]); % create another set of axes

axis([-2 2 -2 2]) % set axis limits

axis(’square’)

data=[0 0; -1.8 0]; % coordinates of endpoints of the bar

phi=0; % initial orientation

R=[cos(phi) -sin(phi); +sin(phi) cos(phi)]; % rotation matrix

data=R*data;

% ----- Define the objects called bar, hinge, and path.

bar = animatedline(’LineWidth’,3); % create handle for bar

hinge = animatedline(’Marker’,’o’,’MarkerSize’,10); % create handle for hinge

path = animatedline(’Marker’,’.’); % create handle for path

% ----- Initialize object positions ---------

addpoints(hinge,0,0); % draw hinge

addpoints(bar,data(1,:),data(2,:)) % bar in initial position

addpoints(path,[],[]); % initialize path

%------Euler’s method for numerical integration

while(t<tfinal);

t=t+dt; % update time, position, etc.

theta=theta + thetadot*dt;

thetadot=thetadot -sin(theta)*dt;

R=[cos(theta) (-sin(theta)); sin(theta) cos(theta)];

datanew= R*data;

%---- change the property values of the objects: path and bar.

clearpoints(bar); % clear previous bar positions

addpoints(path,datanew(1,1),datanew(2,1));

addpoints(bar,datanew(1,:),datanew(2,:));

addpoints(Phase,theta,thetadot);

addpoints(Displ,t,theta);

addpoints(Vel,t,thetadot);

drawnow;

end
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Figure 5.21: Animation of motion of a bar pendulum along with animation of
position and velocity data.

5.6.4 Handle Graphics functions for transforming a group of
objects

When you get a little ambitious with animation, you may want to use several graph-

ics objects together in a group and transform the group as a whole during your

animation. MATLAB facilitates this task by providing several helper functions.

While we refrain from going into details (you can always use the online documenta-

tion), we must mention these functions here in brief so that you are aware of their

existence.

hgtransform: creates a transform object (an object with special properties that

can be used for transforming the object) and returns its handle. This handle,

in turn, can be used to assign it as a parent to several graphic objects that

then become a single group of transformable objects. You can use the group

handle to set properties of the entire group in one go.

makehgtform: creates a 4 × 4 transformation matrix for scaling, translating, and

rotating objects in 3D. The transformation matrix thus created can be used to

transform a group of objects associated with a handle created by hgtransform.

For more description and examples, see the on-line documentation on these

two powerful functions.
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EXERCISES

1. Dressing up the graph with text, gtext, xlabel, ylabel, and title: Plot
y = exp(x) in the interval [-3, 3] using a solid line. Now plot a linear approximation
of ex (i.e., y = x) using a dashed line and a quadratic approximation of ex (i.e.,

y = 1 + x + x2

2
) using a dotted line. Title the plot “Gross Approximations of

exp(x).” Label the y-axis as “Approximations of exp(x)” and the x -axis as “x”. Use
text to label the exp(x ) curve at position (2, 8). Use gtext to label the linear and
quadratic approximations of exp(x ) appropriately. Set axes limits to [-3, 3, -5, 15].

2. Plotting with lines and legends: Repeat the plots for exp(x) in Problem 2. Use
the line command to plot the linear and the quadratic approximations. Identify
the plotted lines using legend instead of text or gtext.

3. Special 2-D line plots: Plot the following special 2-D line plots

(a) Use fplot to plot sin(x)
x

in the interval [−2π, 2π]. Overlay the graphs of sin(x)
and 1

x
in the same plot. Use legend to label the graphs appropriately. Can

you explain the value of sin(x)
x

at x = 0 by examining the values of the other
two functions close to zero?

(b) Plot y = ex in the interval [ 0, 2π]. Plot again using log scale on the x-axis
only, log scale on the y-axis only, and log scale on both axes. Title the graphs
accordingly. Comment on the nature of the graph in each case.

(c) Plot the following signals with varying decay rates and having different ampli-
tudes using two different y-axes (use plotyy):

y1 = 100 sin(2x)e−0.05x

y2 = 5 sin(2x)e−0.25x

in the interval [0, 10]. Label the two y-axes appropriately. Compare this plot
with another plot where you graph the two signals using a single y-axis (i.e.,
using plot command).

4. Bar graphs and pie charts: Consider the following data for countries with the
top defense spending in 2014. Plot a bar graph (horizontal) and pie chart with the
given data and label the countries using gtext. For two or more countries having
similar figures, which do you think is a better way to represent the information? For
highly skewed data (one country having a value much higher than the rest), which
is a better way to represent such data?
Germany: $43.9 bn, India: $45.2 bn, Japan: $47.7 bn, France: $53 bn, UK: $61.8
bn, Russia: $70 bn, S. Africa: $80 bn, China: $129.4 bn, and US: $551 bn.2

5. Discrete data representation with compass, stem and stairs:

(a) The compass plot can be used for plotting or representing complex numbers.
Plot the eigenvalues of the following two matrices

A =

[
1 2 3
2 1 4
3 4 1

]
and B =

[
1 1
−1 2

]
.

Note that matrix A is symmetric while B is not. Can you comment on the
nature of eigenvalues for symmetric and nonsymmetric matrices based on your
observation of the compass plot?

2Data Source: International Institute for Strategic Studies, The Military Balance 2015, London:
Routledge. ISBN 1857437667.
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(b) The stem plot is generally used for plotting discrete data. Plot the approxima-
tion to sin(x) in the interval (0, 2π ) using the first three terms of the Taylor
Series. Plot the corresponding error bars as well on the same plot. Can you
comment on the utility of this combined plot?

6. Areas and filled 2-D plots:

(a) Plot x sin(x) in the interval (-2π, 2π). Shade the positive regions of the graph
in yellow and the other regions in blue.

(b) Plot a cardioid in polar coordinates using polar plot. Separately, plot the same
cardioid using Cartesian coordinates and fill it in red. Use the fill function.
The standard equation for a cardioid in polar coordinates is r = a(1− cos(θ)).
For Cartesian coordinates, use x = a cos θ(1− cos θ) and y = a sin θ(1− cos θ).

7. Plots with insets: Plot f(x) = sin(x) + cos(x) in the domain [0, π], and label
appropriately. Plot y = 0 line overlaid on the same plot. Remove the bounding box
of the plot. In the same axes, create an inset in the top right corner and plot sin(x)
with fill. Create another inset, this time in the bottom left corner of the axes and
plot cos(x). Fill the plot using area. Give a pause of 0.5 seconds between each inset
plot.

8. A different view in each window using subplot: Plot four different views of
a conical helix in the same figure window. Use subplot and view to generate the
different views. Show 3-D view and projections on XY, YZ, and ZX planes. Title
each view appropriately and label the axes. The parametric equations of a conical
helix are: x = t cos(t), y = t sin(t), and z = t. Plot in the domain (0,10π).

9. Surface plots: Plot the surface generated by

Z = sin(x) cos(x)e−
√
x2+y2

over the domain x ∈ [−3, 3] and y ∈ [−3, 3].

Use meshgrid to generate a grid of X and Y data. Plot the surface with (a)
meshz(Z), (b) waterfall(Z), (c) mesh(X,Y,Z), (d) meshc(X,Y,Z), (e) surf(X,Y,Z),
and (f) surf(X,Y,Z) with shading interp. Label the plots appropriately. Can you
describe the observed difference in each of these plots?

10. Fun with 3-D solids:

(a) Plot a sphere cantered at the origin with a radius of 3 units. In the same
graph, plot two unit spheres touching the larger sphere at its north and south
poles. Set the view to default for 3-D plots.

(b) Plot three ellipsoids oriented along the X, Y, and Z axes, all with the origin as
their centers. Choose the long axis of each ellipsoid to be at least three times
the other axes.

11. Moving torch effect with lights on surfaces: Create a cylinder using the
cylinder function defined by

r = 1 + 0.1 sin(z) cos2(z))ez/2

with z ∈ [0, 3π]. For the view from (-47, 20), create a moving light source such
that the light appears to move across the cylinder surface from bottom to top in
a sweeping fashion. (Hint: Use the light function and the concept of handles to
delete the previous light position before calling the next one.)

12. Motion of a simple pendulum: Animate a simple pendulum governed by the
ODE θ̈ + θ = 0. The bob of the pendulum should be distinctly visible and should
not leave a trail.
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6. Algebraic
Equations

6.1 Linear Algebra

6.1.1 Solving a linear system

Solving a set of linear algebraic equations is easy in MATLAB. It is, perhaps, also the

most used computation in science and engineering. Solving a system of equations

on a computer is now as basic a task as doing scientific calculations on a calculator.

Let us see how MATLAB makes this task easy and pleasant.

We will solve a set of given linear algebraic equations. To solve these equations,

no prior knowledge of matrix methods is required. The first two steps outlined

below are really basic for most people who know a little bit of linear algebra. We

will consider the following set of equations for our example:

5x = 3y − 2z + 10,

8y + 4z = 3x+ 20,

2x+ 4y − 9z = 9.

Step 1: Rearrange equations: Write each equation with all unknown quantities

on the left-hand side and all known quantities on the right-hand side. Thus,

for the preceding equations, rearrange them such that all terms involving x,

y, and z are on the left side of the equal sign:

5x− 3y + 2z = 10,

−3x+ 8y + 4z = 20, (6.1)

2x+ 4y − 9z = 9.

Step 2: Write the equations in matrix form: To write the equation in the

matrix form [A]{x} = {b} where {x} is the vector of unknowns, you have to

arrange the unknowns in vector x, the coefficients of the unknowns in matrix
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A, and the constants on the right-hand side of the equations in vector b. In

this particular example, the unknown vector is

x =

 x
y
z

,
the coefficient matrix is

A =

 5 −3 2
−3 8 4

2 4 −9

,
and the known constant vector is

b =

 10
20
9

.
Note that the columns of A are simply the coefficients of each unknown from

all three equations. Now you are ready to solve this system in MATLAB.

Step 3: Solve the matrix equation in MATLAB: Enter the matrix A and vec-

tor b, and solve for vector x with x=A\b (note that the \ is different from the

division /):
For on-line help

type:

help slash

>> A = [5 -3 2; -3 8 4; 2 4 -9];  % Enter matrix A
>> b = [10; 20; 9];               % Enter column vector b
>> x = A\b                        % Solve for x
x =
    3.4442
    3.1982
    1.1868

>> c = A*x

The backslash (\) or the left division
is used to solve a linear system of
equations [A]{x} = {b}. For more
information, type:  help slash.

 % check the solutionc =
    10.0000
    20.0000
     9.0000

You can also use a powerful function, linsolve, to solve linear systems if your

matrix A has exploitable structure (e.g., triangular, positive definite).

6.1.2 Gaussian elimination

In introductory linear algebra courses, we learn to solve a system of linear algebraic

equations by Gaussian elimination. This technique requires forming a rectangu-

lar matrix that contains both the coefficient matrix A and the known vector b

in an augmented matrix. The Gauss–Jordan reduction procedure is then used to

transform the augmented matrix to the so-called row reduced echelon form using
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elementary row operations.1 MATLAB has a built-in function, rref, that does pre-

cisely this reduction, i.e., transforms the matrix to its row reduced echelon form.

For example, consider eqn. (6.1) with the coefficient matrix A and the known vec-

tor b created previously. To solve the equations with rref, type the following

commands:

>> C = [A b]

C =

     5    -3     2    10
    -3     8     4    20
     2     4    -9     9

>> Cr = rref(C)

Cr =

    1.0000         0         0    3.4442
        0    1.0000         0    3.1982
        0         0    1.0000    1.1868
 

 Create the augmented matrix C by
 appending b to matrix A as the last
 column. Now C is a 3    4 matrix.

 
 

Perform row operations on C to 
produce row reduced echelon form
matrix Cr. The last column of Cr is 
the solution of Ax = b.

The last column of Cr is the solution x as found on the previous page using x=A\b.

This technique of solving matrix equations—using row reduced echelon form—is

not a serious contender in any meaningful numerical problem solving. There are

many other techniques with matrix factorization that find favor in real applications.

However, for doing hand calculations, this technique is hard to beat. With just a

little bit of thought, this technique can also be used to find the explicit inverse of a

matrix. For a square matrix A, if the inverse exists, then we know that

AA−1 = I,

where I is the identity matrix. But AA−1 = I is also a matrix equation just like

Ax = b. Therefore, we can find the unknown matrix A−1 by row reducing the

augmented matrix [A I] with the following commands:

C = [A eye(size(A))]; % form the augmented matrix

Cr = rref(C); % row reduce the augmented matrix

Ainv = Cr(:,4:6); % last three columns of Cr contain the inverse

You rarely ever need to find the explicit inverse of a matrix. However, if you do, then

MATLAB provides, as you would expect, a function inv to compute the inverse.

So, you can get the same answer as above with the command Ainv = inv(A). You

can always check the inverse by computing Ainv*A or A*Ainv.

1These basic concepts are discussed in all introductory linear algebra textbooks. There are
many excellent books that you can refer to. For example, for a MATLAB friendly book, see
Introductory Linear Algebra: An Applied First Course by Bernard Kolman and David R. Hill,
eighth edition, Prentice Hall, 2004.
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6.1.3 Finding eigenvalues and eigenvectors

The omnipresent eigenvalue problem in scientific computation shows up as

A v = λv, (6.2)

where A is an n × n matrix, v is an n × 1 vector and λ is a scalar. The problem

is to find λ and v for a given A so that eqn. (6.2) is satisfied. By hand, the solu-

tion is usually obtained by first solving for the n eigenvalues from the determinant

equation |A− λI| = 0, and then solving for the n eigenvectors by substituting the

corresponding eigenvalues in eqn. (6.2), one at a time. On pencil and paper, the

computation requires a few pages even for a 3× 3 matrix,2 but it is a 1.2-inch long

command in MATLAB (excluding entering the matrix)! Here is an example:

Step 1: Enter matrix A and type [V,D]=eig(A). (See Fig. 6.1.)

>> A = [5 -3  2; -3  8  4; 4  2  -9];
>> [V,D] = eig(A)

V =

    0.1725    0.8706   -0.5375   
    0.2382    0.3774    0.8429   
   -0.9558    0.3156   -0.0247    

D =

  -10.2206         0         0
         0    4.4246         0
         0         0    9.7960

Here V is a matrix containing the
eigenvectors of A as its columns.
For example, the first column of V 
is the first eigenvector of A.

D is a matrix that contains the 
eigenvalues of A on its diagonal.
 

Figure 6.1: Finding eigenvalues and eigenvectors of a matrix.
For on-line help

type:

help eig Step 2: Extract what you need: In the output list, V is an n × n matrix whose

columns are eigenvectors and D is an n × n diagonal matrix that has the

eigenvalues of A on its diagonal. The function eig can also be used with one

output argument, e.g., lams=eig(A), in which case the function gives only

the eigenvalues in the vector lams.

After computing the eigenvalues and eigenvectors, you could check a few things

if you wish: Are the eigenvalues and eigenvectors ordered in the output? Check

by substituting in eqn. (6.2). For example, let us check the second eigenvalue and

second eigenvector and see if, indeed, they satisfy Av = λv.

2If A is bigger than 4 × 4, you have to be insane to try to solve it by hand; for a 4 × 4 matrix,
you are either borderline insane or you live in a civilization without computers.



6.1 Linear Algebra 203

>> v2 = V(:,2); % extract the second column from V

>> lam2 = D(2,2); % extract the second eigenvalue from D

>> A*v2 - lam2*v2 % check the difference between A*v and lambda*v

Here, we have used two commands for clarity. You could, of course, combine

them into one: A*V(:,2)-D(2,2)*V(:,2). Note that the last command may not

result in a zero vector, as you expect, but it will have very small numbers.

6.1.4 Generalized eigenvalue problem

If the eigenvalue problem is stated as

A v = λ B v, (6.3)

where A is an n×nmatrix, v is an n×1 vector, B is an n×nmatrix, and λ is a scalar,

then it is called a generalized eigenvalue problem. Note that if matrix B is invertible,

then the problem can be converted to a normal eigenvalue problem as B−1A v = λv

and the eigenvalues easily found from eig(inv(B)*A) in MATLAB. However, such

computation will require the explicit inverse of B which is not advisable for large

matrices. MATLAB lets you use eqn. (6.3) directly to compute the generalized

eigenvalues and eigenvectors using the same function eig simply by providing matrix

B as an additional input argument:

>> [V,D] = eig(A,B); %solve the generalized eigenvalue problem, eqn.(6.3)

The generalized eigenvalue problems arise naturally in electrical and mechanical

networks of discrete elements where oscillations of some physical quantity, e.g., cur-

rent or displacement, are observed. For example, let us consider a one-dimensional

network of n springs and (n+1) masses connected as shown in Fig. 6.2. This is an n

Figure 6.2: A multi-degree of freedom system of springs and masses.

degree of freedom system where each of the n-masses can oscillate horizontally. Let

xj denote the displacement of mass mj to the right (positive x-direction). Then the

equations of motion of the system when perturbed from equilibrium can be written

as follows:

m1ẍ1 = −(k1 + k2)x1 + k2x2

m2ẍ2 = k2x1 − (k2 + k3)x2 + k3x3

...
...

mnẍn = knxn − (kn + kn+1)xn.
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This set of linear ordinary differential equations is most conveniently expressed

in matrix form as

Mẍ = −Kx, (6.4)

where

M =


m1 0 0 · · ·

0 m2 0 · · ·
. . .

· · · 0 0 mn

 and K =


k1 + k2 −k2 0 · · ·
−k2 k2 + k3 k3 · · ·

. . .

· · · 0 −kn kn + kn+1

.
If we assume that x = v sinλt, then eqn. (6.4) reduces to

Kv = λ2Mv, (6.5)

which is a generalized eigenvalue problem with n generalized eigenvalues λ2
i and the

corresponding generalized eigenvectors vi. Here, λi is the ith natural frequency of

the system and the eigenvector vi represents the corresponding mode of vibration

or mode shape.3 Clearly, eqn. (6.5) can be solved for λ2 and v with the command

eig(K,M). This problem is admittedly a rather trivial example of a generalised

eigenvalue problem. Here M is a diagonal matrix and it is trivial to find its in-

verse, and convert the problem into a regular eigenvalue problem by rewriting as

(M−1K)v = λ2v. In general, matrix B in eqn. (6.3) is not diagonal but sparsely

populated.

Finding a few eigenvalues of a large system

Computation of eigenvalues and eigenvectors is an expensive process (generally,

O(n3)). Fortunately, for large systems, we are usually not interested in all eigen-

values but just a few of them. For example, if we model the vibrations of a rod

or a beam with a large number of masses and springs, say n = 500, as shown in

Fig. 6.2, we need not find all 500 natural frequencies for a meaningful modal anal-

ysis; generally the first 10 or 15 would suffice. In general, for most large systems,

we are either interested in the first few largest or the smallest eigenvalues. In all

such cases, we can use eigs—a built-in function that lets us compute just a few

eigenvalues and the corresponding eigenvectors. Thus for a large and sparse square

matrix A, eigs(A,5) will quickly compute the largest five eigenvalues and [V,D] =

eigs(A,5) will return the largest five eigenvalues and the corresponding eigenvec-

tors. The same function also works for finding the largest k generalized eigenvalues

of eqn. (6.3) with the command eigs(A,B,k) and the smallest k eigenvalues with

the command eigs(A,B,k,’SM’).

3A natural mode of vibration of a system is defined by a special free motion in which every
material point of the system executes simple harmonic motion with the same frequency. Thus
assuming x = v sinλt defines a natural mode of vibration because each mass executes a simple
harmonic motion with the same frequency λ: xj = vj sinλt, j = 1 to n. Note that each mass
can have different amplitude vj . These concepts are explained in every introductory book on
vibrations. This kind of analysis for finding natural frequencies and the corresponding mode
shapes is generally referred to as modal analysis in engineering texts.
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6.1.5 Matrix factorizations

MATLAB provides built-in functions for several matrix factorizations (decomposi-

tions):

1. LU factorization: The name of the built-in function is lu. To get the LU

factorization of a square matrix A, type the command

[L,U] = lu(A);

MATLAB returns an upper triangular matrix U such that L*U=A and an

almost lower triangular matrix L. You can get a unit lower triangular matrix L

with [L,U,P] = lu(A) where P is a permutation matrix such that LU = PA

(see the on-line help on lu).

2. QR factorization: The name of the built-in function is qr. Typing the

command

[Q,R] = qr(A);

returns an orthogonal matrix Q and an upper triangular matrix R such that

Q*R=A. For more information, see the on-line help.

3. Cholesky factorization: If you have a positive definite matrix A, you can

factorize the matrix with the built-in function chol. The command

R = chol(A);

produces an upper triangular matrix R such that R’*R=A.

4. Singular value decomposition (svd): The name of the built-in function

is svd. If you type

[U,D,V] = svd(A);

MATLAB returns two orthogonal matrices, U and V, and a diagonal matrix

D, with the singular values of A as the diagonal entries, such that U*D*V=A.

5. Schur decomposition: A complex square matrix A is said to be reduced to

its Schur form T, an upper triangular matrix, if A = UTU−1 where U is a

unitary matrix (i.e., U−1 is the conjugate transpose of U). In MATLAB, you

can find T with the command T = schur(A), or find both U and T with

[U, T] = schur(A);

The diagonal of matrix T contains the eigenvalues of A.

If you know which factorization to use, then all you need to know here is the

syntax of the corresponding function. If you do not know where and how these

factorizations are used, then this is not the right place to learn it; look into your

favorite books on linear algebra.4

4Some of my favorites: Linear Algebra and Its Applications by Strang, Saunders HBJ College
Publishers; Matrix Computations by Golub and Van Loan, The Johns Hopkins University Press;
and Matrix Analysis by Horn and Johnson, Cambridge University Press.
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6.1.6 Advanced topics

MATLAB’s main strength is its awesome suite of linear algebra functions. There

are hundreds of functions that aid in finding solutions to linear algebra problems,

from very basic problems to very advanced ones. For example, there are more

than 20 eigenvalue-related functions. Type lookfor eigenvalue to see a list of

these functions. Among these functions, eigshow deserves a special mention. This

function is a graphical representation of transformation of a unit vector x in the

2-D plane with a given matrix A. The GUI based function eigshow allows the user

to find an eigenvector for the given matrix A simply by rotating the unit vector x

until it becomes parallel to Ax.

Sparse matrices

There is a separate suite of functions for sparse matrices and computations with

these matrices. These functions include

Category Example functions

Elementary matrix functions speye, sprand, spdiags

Full to sparse conversion sparse, full, spconvert

Utility functions nnz, nzmax, spalloc, spy

Reordering algorithm colamd, colperm, symamd, symrcm

Linear algebra eigs, svds, luinc, cholinc

Linear equations pcg, bicg, cgs, qmr, ilu, lsqr
For on-line help

type:

help sparfun Please see the on-line help for a list of these functions and their usage.

Graphs, trees, and network analysis

Many problems in computer science and operations research are related to storing

information and finding new information from the stored information. Study of

such problems over the years has resulted in relatively new fields of graph theory

and network analysis. The underlying analysis uses matrices for storing and finding

information. The operations required are usually very different from typical linear

algebra operations of matrix multiplication, etc. The problems are typically repre-

sented by nodes, edges, and connectivities. Most of the analysis involves the same

entities. The matrices that represent graphs and trees are sparse and hence most

functions related to sparse matrices are useful. In addition, MATLAB provides

several functions for operations on graphs, trees, and networks. There are functions

for generating graphs, e.g., graph, digraph, for manipulating nodes and edges, e.g.,

addenda, findnode, remade, subgraph, etc., for searching and querying structure,

e.g., bfsearch, dfsearch, maxflow, etc., as well as creating matrix representation

with functions such as adjacency and incidence. Similarly, there are several func-

tions for generating, manipulating and querying trees (e.g., treelayout, treeplot,

etree, etreeplot, gplot, etc.).

MATLAB also provides built-in functions for computation geometry that can

help in triangulation, Delaunay triangulation, Voronoi diagrams, and polygonal

constructions. See on-line documentation on these topics for more details.
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6.2 Nonlinear Algebraic Equations

The MATLAB function fzero solves nonlinear equations involving one variable (see

also function solve in Chapter 9 if you have the Symbolic Math Toolbox). You can

use fzero by proceeding with the following three steps.

1. Write the equation in the standard form:

f(x) = 0.

This step usually involves trivial rearrangement of the given equation. In this

form, solving the equation and finding a zero of f(x) are equivalent.

2. Write a function that computes f(x): The function should return the

value of f(x) at any given x.

3. Use the built-in function fzero to find the solution: fzero requires

an initial guess and returns the value of x closest to the guess at which f(x)

is zero. The function written in Step 2 is used as an input to the function

fzero. The call syntax of fzero is: For on-line help

type:

help fzero

optional
arguments

initial guess

x_sol = fzero(@your_function, x0, options)

the solution
(zero of the function)

your function
containing

the equation

In the beginning, it is not worth worrying about options. In most MATLAB

functions that take user defined functions as input, there are optional input argu-

ments that are context dependent and generally control how the solution proceeds.

When you are learning about a function for the first time, it is good to ignore

options, especially because MATLAB uses reasonable default values for all op-

tional arguments. We will discuss how to deal with options later. So, let us use

fzero in its simplest form first:

>> x_sol = fzero(@my_function, x0)

Here, my_function is the name of the user defined function that contains the

nonlinear algebraic equation whose solution we are interested in. This function is

most conveniently defined as an anonymous function or in a function file. Just

in case you need to remind yourself, see tutorial lessons, Lesson 7 on anonymous

functions on page 43 and Lesson 5 on functions files on page 33. We present both

examples here.
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Example: A transcendental equation

Solve the following transcendental equation:

sinx = ex − 5.

Step 1: Write the equation in standard form: Rearrange the equation as:

sin(x)− ex + 5 = 0 ⇒ f(x) = sin(x)− ex + 5.

Step 2: Write a function that computes f(x): Let us code this function both

as an anonymous function and as a .m function (i.e., a function file) and then

use them with fzero to find the the solution.

• Anonymous function:

my_function = @(x) sin(x) - exp(5) + 5; %define the function

• Function file:

function f = transcfun(x);

% TRANSF: computes f(x) = sin(x)-exp(x)+5.

% call syntax: f = transcfun(x);

f = sin(x) - exp(x) + 5;

Write and save the function as an M-file named transcfun.m.

Step 3: Use fzero to find the solution: The commands as typed in the com-

mand window are shown next. The result obtained is also shown. Note that

we have not used the optional arguments options.

  
>> sol_2 = fzero(@transcfun,1)

 
sol_2 =

    1.7878

sol_1 =

    1.7878

%solve eqn using anonymous
%function, my_function,
%with x0=1.

%solve eqn using function
%file, transcfun,
%with x0=1.

>> sol_1 = fzero(my_function,1)

my_function = @(x) sin(x)-exp(x)+5; %define the function>>

Figure 6.3: Solving a nonlinear algebraic equation with fzero: Here the transcen-
dental equation given in the example is coded with an anonymous function as well
as a function in an m-file. Solution is obtained using both functions.

To check the result, we can plug the value back into the equation or plot f(x)

and see if the answer is right. You can readily do that with

>> my_function(sol_1)

The output of this command should be zero or a number close to zero (something

like 10−15).
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Optional arguments

The optional argument, options, for fzero is a structure with many fields whose

value dictates how the solution is computed, whether solution iterations are dis-

played or not, what value of tolerance is used for computing the solution or evalu-

ating the given function, etc. There are many things you could specify in options.

The default values of various fields of options are changed using the built-in func-

tion optimset. This function is specifically written for setting options for all opti-

mization related functions. To learn how to use optional arguments and what their

appropriate values should be, see the on-line documentation on zero or optimset

by typing doc fzero or doc optimset, respectively.

6.2.1 Roots of polynomials

You can also find the zeros of a polynomial equation (e.g., x5 − 3x3 + x2 − 9 = 0)

with fzero. However, fzero locates the root closest to the initial guess; it does not

give all roots. To find all roots of a polynomial equation, use the built-in function

roots. This function requires the coefficients of the powers of x (in decreasing

order), including the constant (the coefficient of x0), in a vector and gives all the

roots as the output. Thus, for the polynomial equation

x5 − 3x3 + x2 − 9 = 0,

the coefficients are

(1)︸︷︷︸
C1

x5 + (0)︸︷︷︸
C2

x4 + (−3)︸︷︷︸
C3

x3 + (1)︸︷︷︸
C4

x2 + (0)︸︷︷︸
C5

x+ (−9)︸︷︷︸
C6

= 0

or

C = [1 0 − 3 1 0 − 9].

Thus, the coefficient vector is always of length n+ 1 where n is the order of the

polynomial. In fact, it is from the length of the vector that MATLAB figures out

the polynomial order. Now here is how you find the roots:

>> c = [1 0 -3 1 0 -9];

>> roots(c)

ans =

   1.9316          
   0.5898 + 1.1934i
   0.5898 - 1.1934i
  -1.5556 + 0.4574i
  -1.5556 - 0.4574i

% Coefficient vector C

Finding multiple roots of a nonpolynomial or finding roots of functions of several

variables is a more advanced problem. MATLAB provides specialized functions

for such problems in the Optimization Toolbox, but then you have to buy that

separately. You can, of course, always write your own function to do these tasks.
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EXERCISES

1. Linear algebraic equations: Find the solution of the following set of linear alge-
braic equations, as advised below.

x+ 2y + 3z = 1,

3x+ 3y + 4z = 1,

2x+ 3y + 3z = 2.

• Write the equation in matrix form Ax = b where

x =

{
x
y
z

}
and solve for x using the left division or backslash operator, \.

• Find the solution again using the function rref on the augmented matrix.

2. Solving a rectangular set of equations: In curve-fitting problems, we typically
come across a system of equations that has more equations than unknowns. Such
systems are called overdetermined. In the case of linear systems, they result in a
rectangular matrix equation. For example, consider a set of five measurements yj
corresponding to the five values of a variable xj that are supposed to be linearly
related, i.e., yj = mxj + c where m and c are unknowns. The resulting equations
can be written in matrix form as

5 1
10 1
20 1
50 1
100 1


{

m
c

}
=


15
33
53
140
301

 .

We are interested in solving for m and c. Here the coefficient matrix A is a 5 × 2
rectangular matrix. Fortunately, MATLAB has no trouble solving such systems.
Use the same backslash operator and solve for m and c. For such systems, the
solution obtained is an approximate solution with least square error.

3. Pseudoinverse of a matrix: Consider a rectangular system of equations Ax = b
where A is m× n, x is n× 1, and b is m× 1. We cannot write the solution as x =
A−1 b because A−1 is not defined for a rectangular matrix. However, multiplying
both sides of the equation by AT , we get

ATAx = AT b

⇒ x = (ATA)−1Ab,

provided ATA is not singular. Clearly, ATA is a square matrix of size m × m
and hence we can find the inverse if it exists. The product (ATA)−1A is called
the pseudoinverse of A. Consider the system given in Problem 2 where A is a 5× 2
matrix. Find the solution form and c using the pseudoinverse of A and compare your
solution with the direct solution using backslash operator as obtained in Problem 2.

4. Cayley–Hamilton Theorem: This famous theorem states that if P (λ) = 0 is the
characteristic equation of a square matrix A where P (λ) is the characteristic poly-
nomial, then A also satisfies the same equation, i.e., P (A) = 0. The characteristic
polynomial of A is obtained by setting

det(λI−A) = 0.
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MATLAB provides a convenient function poly that finds the coefficients of the
characteristic polynomial of a matrix. Thus poly(A) for an n× n matrix A results
in a vector [c1 c2 c3 · · · cn] where

c1λ
n + c2λ

n−1 + · · ·+ cnλ+ cn+1 = 0.

• Take a 3×3 square matrix A (e.g., from Problem 1). Find the coefficients of the
characteristic polynomial with poly(A). Verify the Cayley–Hamilton theorem
by computing

P (A) = c1A
3 + c2A

2 + c3A + c4I.

Is the result a zero matrix?

• The coefficients cj of the characteristic equation are the invariants of matrix
A. For a 3× 3 matrix A, the characteristic equation in terms of the invariants
of A is

λ3 − I1λ2 + I2λ− I3 = 0,

where I1, I2, and I3 are the first, second, and third invariants of the matrix,
respectively:

I1 = tr(A) = a11 + a22 + a33,

I2 =
1

2
[(tr(A))2 − tr(A2)],

I3 = det(A).

Compute the trace and determinant of A with trace(A) and det(A) respec-
tively, and verify that the coefficients of the characteristic polynomial given by
poly are indeed the respective invariants of matrix A, i.e.,

c1 = 1,

c2 = −tr(A),

c3 =
1

2
[(tr(A))2 − tr(A2)],

c4 = −det(A).

• You can compute the explicit inverse of a matrix using the Cayley–Hamilton
theorem as follows. If cj ’s are the coefficients of the characteristic polynomial
of A, then

c1A
n + c2A

n−1 + · · ·+ cnA + cn+1I = 0.

Multiplying both sides with A−1 and rearranging terms, we get

cn+1A
−1 = −(c1A

n−1 + c2A
n−2 + · · · cn−1A + cnI).

Thus, we can easily compute A−1 with this formula. Take the 3× 3 matrix A
used in the computation above and compute its inverse using the formula

A−1 = − 1

c4

(
c1A

2 + c2A + c3I
)

and compare the result with inv(A).

• If you feel you are up to it, try comparing the computational time taken by
MATLAB in computing the direct inverse versus the inverse computed using
the Cayley–Hamilton theorem.



212 Algebraic Equations

5. Eigenvalues and eigenvectors: Consider the following matrix.

A =

[
3 −3 4
2 −3 4
0 −1 1

]
.

• Find the eigenvalues and eigenvectors of A.

• Verify that the sum of eigenvalues is equal to the trace of the matrix (first
invariant of a matrix).

• Show, by computation, that the eigenvalues of A2 are squares of the eigenvalues
of A.

• Compute the square of the eigenvalues of A2. You have now obtained the
eigenvalues of A4. From these eigenvalues, can you guess the structure of A4?

• Compute A4. Can you compute A−1 without using the inv function?

6. Solution of nonlinear algebraic equations: All problems below require solving
a nonlinear algebraic equation that you can readily do with fzero.

• Find the value of x where the two functions y = e−x and y = x intersect.

• Solve the following equation with two initial guesses x0 = 4.2 and x0 = 4.3:

e−
x
2 (sin 2x+ cosx) = 0.

Can you explain the two solutions? [Hint: Plot the function.]

• Solve the equation x3 − 2x + c = 0 taking c = 0, and with initial guesses
x0 = −1 and then x0 = 1. Are the solutions identical? Now solve the same
equation taking c = 2, and starting with the same initial guesses. Are the
solutions identical now? Explain the difference in the two sets of solutions.



7.
Data
Analysis and
Regression

One of the most important needs in scientific computation is that of data analysis.

Most experimental results and painstakingly collected data require computational

tools for figuring out relationships and hidden treasures in the data. Two of the

most common computational activities centered around data are regression anal-

ysis and data statistics. While regression is concerned with finding relationships

among various data variables and developing predictions based on those relation-

ships, statistics provides several measures and metrics for the data that we use to

make sense of the data.

MATLAB has a suite of functions, as we would expect, for helping us with both

regression and statistics. We will explore some of these functions here. First, we

discuss regression where we exploit MATLAB’s built-in tools for curve fitting that

aid in both linear and nonlinear regression analysis.

7.1 Curve Fitting and Regression Analysis

7.1.1 Polynomial curve fitting on the fly

Curve fitting is a technique of finding an algebraic relationship that “best” (in a least

squares sense) fits a given set of data. Unfortunately, there is no magical function

(in MATLAB or otherwise) that can give you this relationship if you simply supply

the data. You have to have an idea of what kind of relationship might exist between

the input data (xi) and the output data (yi). However, if you do not have a firm idea

but you have data that you trust, MATLAB can help you explore the best possible

fit. MATLAB includes Basic Fitting in its figure window’s Tools menu that lets

you fit a polynomial curve (up to the tenth order) to your data on the fly. It also
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gives you options of displaying the residual at the data points and computing the

norm of the residuals. This can help in comparing different fits and then selecting

the one that makes you happy. Let us take an example and go through the steps.

Example 1: Linear regression or straight-line fit

Let us say that we have the following data for x and y and we want to do linear

regression, i.e., we want to find a linear relationship between x and y. We can, in

one shot, get the best linear regression equation (from the best straight-line fit) for

this data.

x 5 10 20 50 100
y 15 33 53 140 301

Here is all it takes to get the best linear fit, along with the equation of the fitted

line.

Step 1: Plot raw data: Enter the data and plot it as a scatter plot using some

marker, say, circles.

x = [5 10 20 50 100]; % x-data

y = [15 33 53 140 301]; % y-data

plot(x,y,’o’) % plot x vs y using circles

Step 2: Use built-in Basic Fitting to do a linear fit: Go to your figure win-

dow, click on Tools, and select Basic Fitting from the pull-down menu (see

Fig. 7.1). A separate window appears with Basic Fitting options.

Figure 7.1: First plot the raw data. Then select Basic Fitting from the Tools menu
of the figure window. A separate window appears with several Basic Fitting options
for polynomial curve fits. Check appropriate boxes in this window to get the desired
curve fit and other displays, such as the fitted equation.
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Step 3: Fit a linear curve and display the equation: Check the boxes for lin-
ear and Show equations from the Basic Fitting window options. The best-

fitted line as well as its equation (the linear regression equation) appear in

the figure window. You are now done. The result is shown in Fig. 7.2.
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y = 3*x - 2.4

data 1
   linear

Figure 7.2: Linear curve fit through the data using Basic Fitting from the Tools
menu of the figure window.

Example 2: Comparing different fits

Let us take another example where we try two different fits, quadratic and cubic

(nonlinear regression), for the same data and do a comparison to figure out which

one is better. We first create some x and y data.

x = 0 : pi/30 : pi/3; % x-data

y = sin(x) + rand(size(x))/100 % y-data (corrupted sine)

Step 1: Plot raw data: We already have the x and y data. So, go ahead and

plot the raw data with plot(x,y,’o’).

Step 2: Use Basic Fitting to do a quadratic and a cubic fit: Go to your fig-

ure window, click on Tools, and select Basic Fitting from the pull-down menu

(as in Example 1). In the Basic Fitting window, check quadratic and cubic
boxes. In addition, check the boxes for Show equations, Plot residuals, and

Show norm of residuals.

The result is shown in Fig. 7.3. The residual at each data point is plotted in the

lower subplot for each fit and the norm of the residual is also shown on the plot. Note

that although the two curves are visually almost indistinguishable over the range of

the data, the norm of the residuals for the cubic fit is an order of magnitude lower

than that of the quadratic fit. Therefore, you may like to choose the cubic fit in

this case.
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y =  0.25*x 2 + 1.1*x + 0.0013
y =  0.18*x 3 + 0.039*x2 + 0.98*x + 0.0088

data 1
   quadratic
   cubic
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Quadratic: norm of residuals = 0.018668
Cubic: norm of residuals = 0.0088075

Figure 7.3: A comparison of quadratic and cubic curve fits for some data using
Basic Fitting from the Tools menu of the figure window. (Note that if you try this
example, you will get slightly different coefficients and residuals from those shown
here because y contains random noise.)

7.1.2 Do it yourself: Curve fitting with polynomial functions

It may be worth understanding how these curve fits work. In MATLAB, it is fairly
For on-line help

type:

help polyfun easy to do polynomial curve fits using built-in polynomial functions and get the

desired coefficients. If you would like to understand it, please read on, otherwise

you may want to skip this section.

The simplest relationship between two variables, say x and y, is a linear rela-

tionship: y = mx+ c. For a given set of data points (xi, yi), the problem is to find

m and c such that yi = mxi + c best fits the data. For data points that are not

linearly related, you may seek a polynomial relationship

yi = akx
k
i + ak−1x

k−1
i + · · ·+ a2x

2
i + a1xi + a0

or an exponential relationship yi = c1e
c2xi or even more complicated relationships

involving logarithms, exponentials, and trigonometric functions.

For polynomial curve fits, of any order n, the problem is to find the (n + 1)

coefficients an, an−1, an−2, · · · , a1, and a0, from the given data of length (n + 1)

or more. MATLAB provides an easy way—through the built-in functions polyfit

and polyval.

polyfit Given two vectors x and y, the command a = polyfit(x,y,n) fits a

polynomial of order n through the data points (xi, yi) and returns (n+1) coef-

ficients of the powers of x in the row vector a. The coefficients are arranged in

the decreasing order of the powers of x, i.e., a = [an an−1 · · · a1 a0].

polyval Given a data vector x and the coefficients of a polynomial in a row

vector a, the command y=polyval(a,x) evaluates the polynomial at the data



7.1 Curve Fitting and Regression Analysis 217

points xi and generates the values yi such that

yi = a(1)xni + a(2)xn−1
i + · · ·+ a(n)x+ a(n+ 1).

Here the length of the vector a is n + 1 and, consequently, the order of the

evaluated polynomial is n. Thus if a is five elements long, the polynomial to

be evaluated is automatically ascertained to be of fourth order.

Both polyfit and polyval use an optional argument if you need error estimates.

To use the optional argument, see the on-line help on these functions.

Example: Straight-line (linear) fit

The following data is obtained from an experiment aimed at measuring the spring

constant of a given spring. Different masses m are hung from the spring and the

corresponding deflections δ of the spring from its unstretched configuration are

measured. From physics, we know that F = kδ and here F = mg. Thus, we can

find k from the relationship k = mg/δ. Here, however, we are going to find k

by plotting the experimental data, fitting the best straight line (we know that the

relationship between δ and F is linear) through the data, and then measuring the

slope of the best-fit line.

m(g) 5.00 10.00 20.00 50.00 100.00
δ(mm) 15.5 33.07 53.39 140.24 301.03

Fitting a straight line through the data means we want to find the polynomial

coefficients a1 and a0 (a first-order polynomial) such that a1xi+a0 gives the “best”

estimate of yi. In steps, we need to do the following.

Step 1: Find the coefficients ak’s:

a = polyfit(x,y,1)

Step 2: Evaluate y at finer (more closely spaced) xj ’s using the fitted polynomial:

y fitted = polyval(a,x fine)

Step 3: Plot and see. Plot the given data as points and fitted data as a line:

plot(x,y,‘o’,x fine,y fitted);

As an example, the following script file shows all the steps involved in making a

straight-line fit through the given data for the spring experiment and finding the

spring constant. The resulting plot is shown in Fig. 7.4.

m=[5 10 20 50 100]; % mass data (g)

d=[15.5 33.07 53.39 140.24 301.03]; % displacement data (mm)

g=9.81; % g = 9.81 m/s^2

F=m/1000*g; % compute spring force (N)

a=polyfit(d,F,1); % fit a line (1st order polynomial)

d_fit=0:10:300; % make a finer grid on d

F_fit=polyval(a,d_fit); % evaluate the polynomial at new points

plot(d,F,’o’,d_fit,F_fit) % plot data and the fitted curve

xlabel(’Displacement \delta (mm)’),ylabel(’Force (N)’)

k=a(1); % Find the spring constant

text(100,.32,[’\leftarrow Spring Constant K = ’,num2str(k),’ N/mm’]);
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Figure 7.4: A straight-line fit (a polynomial fit of order one) through the spring
data.

Comments: Even though you can do a polynomial curve fit of any order, you

should have a good reason, possibly based on the physical phenomena behind the

data, for trying a particular order. Blindly fitting a higher-order polynomial is often

misleading. The most common and trustworthy curve fit, by far, is the straight line.

If you expect the data to have an exponential relationship, convert the data to a

log scale and then do a linear curve fit. The result is a lot more trustworthy than

an arbitrary sixth- or tenth-order polynomial fit. As a rule of thumb, polynomial

curve fits of order higher than four or five are rarely required.

7.1.3 Nonlinear regression and least squares curve fitting

The technique of least squares curve fit can easily be implemented in MATLAB,

because the technique results in a set of linear equations that need to be solved.

Here, we will not discuss the details of the technique itself because of space limita-

tions as well as the book’s intent. You may want to consult a book on numerical

methods if you do not know the underlying principles.

Most of the curve fits we do are either polynomial curve fits or exponential curve

fits (includes power laws, e.g., y = axb). If we want to fit a polynomial of order n

through our data, we can use MATLAB’s built-in function polyfit, which already

does a least squares curve fit. Therefore, no special effort is required. Now what if

we want to fit a nonpolynomial function? Two most commonly used functions are:

1. y = aebx.

2. y = cxd.

We can convert these exponential curve fits into polynomial curve fits (actually

a linear one) by taking the log of both sides of the equations, i.e.,
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1. ln(y) = ln(a) + bx or ỹ = a0 + a1x, where ỹ = ln(y), a1 = b, and a0 = ln(a).

2. ln(y) = ln(c) + d ln(x) or ỹ = a0 + a1x̃, where ỹ = ln(y), a1 = d, a0 = ln(c)

and x̃ = lnx.

Now we can use polyfit in both cases with just first-order polynomials to

determine the unknown constants. The steps involved are the following.

Step 1: Prepare new data: Prepare new data vectors ỹ and x̃, as appropriate,

by taking the log of the original data. For example, to fit a curve of the type

y = aebx, create ybar=log(y) and leave x as it is; to fit a curve of the type

y = cxd, create ybar=log(y) and xbar=log(x).

Step 2: Do a linear fit: Use polyfit to find the coefficients a0 and a1 for a linear

curve fit.

Step 3: Plot the curve: From the curve fit coefficients, calculate the values of

the original constants (e.g., a, b). Recompute the values of y at the given

x’s according to the relationship obtained and plot the curve along with the

original data.

Here is an example of one such curve fit. The following table shows the time

versus pressure variation readings from a vacuum pump. We will fit a curve, P (t) =

P0e
−t/τ , through the data and determine the unknown constants P0 and τ .

t 0 0.5 1.0 5.0 10.0 20.0
P 760 625 528 85 14 0.16

By taking the log of both sides of the relationship, we have

ln(P ) = ln(P0)− t

τ
,

or P̃ = a1t+ a0,

where P̃ = ln(P ), a1 = −1/τ , and a0 = ln(P0). Thus, we can easily compute P0

and τ once we have a1 and a0. The following script file shows all the steps involved.

The results obtained are shown both on the linear scale and on the log scale in

Fig. 7.5.

% EXPFIT: Exponential curve fit example

% For the following data for (t,p) fit an exponential curve

% p = p0 * exp(-t/tau).

% The problem is solved by taking the log and then using a linear

% fit (1st order polynomial)

% original data

t = [0 0.5 1 5 10 20];

p = [760 625 528 85 14 0.16];

% Prepare new data for linear fit

tbar = t; % no change in t is required

pbar = log(p);
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% Fit a 1st order polynomial through (tbar,pbar)

a = polyfit(tbar,pbar,1); % the output is a = [a1 a0]

% Evaluate constants p0 and tau

p0 = exp(a(2)); % since a(2) = a0 = log(p0)

tau = -1/a(1); % since a1 = -1/tau

% (a) Plot the new curve and the data on linear scale

tnew = linspace(0,20,20); % create more refined t

pnew = p0*exp(-tnew/tau); % evaluate p at new t

plot(t,p,’o’,tnew,pnew), grid

xlabel(’Time (sec)’), ylabel(’Pressure (torr)’)

% (b) Plot the new curve and the data on semilog scale

lpnew = exp(polyval(a,tnew));

semilogy(t,p,’o’,tnew,lpnew),grid

xlabel(’Time (sec)’), ylabel(’Pressure (torr)’)

% Note: you only need one plot, you can select (a) or (b).
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Figure 7.5: Exponential curve fit: (a) linear scale plot, (b) semilog scale plot.

There is yet another way to fit a complicated function through your data in the

least squares sense. For example, let us say that you have time (t) and displacement

(y) data from a spring–mass system experiment and you think that the data should

follow

y = a0 cos(t) + a1t sin(t).

Here the unknowns are only a0 and a1. The equation is nonlinear in t but linear in

the parameters a0 and a1. Therefore, you can set up a matrix equation using each
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data point and solve for the unknown coefficients. The matrix equation is
cos(t1) t sin(t1)
cos(t2) t sin(t2)
cos(t3) t sin(t3)
...

...
cos(tn) t sin(tn)


{
a0

a1

}
=



x1

x2

x3

...
xn


.

Now you can solve for the unknowns a0 and a1 simply by typing a=A\x where A is

the coefficient matrix and x is the vector containing the measured data xi. Typically,

A is a rectangular matrix and the matrix equation to be solved is overdetermined

(more independent equations than unknowns). This, however, poses no problem,

because the backslash operator in MATLAB solves the equation in a least squares

sense whenever the matrix is rectangular.

7.1.4 General nonlinear fits

In curve fitting, at times, we need to fit nonlinear equations in which the unknown

coefficients appear inside nonlinear functions (as opposed to being linear multipliers

to the nonlinear terms). It is not unusual to have double exponential curve fits:

y(x) = C1e
λ1x+ C2e

λ2x. Here C1 and C2 are linear coefficients but λ1 and λ2 are

nonlinear coefficients. In MATLAB you can do such curve fits by using the services

of fminsearch, which helps you find appropriate values of the nonlinear coefficients

by minimizing the error arising from a guess for their values. Type fitdemo on the

command prompt to see a demo of how you can do such curve fits. However, you

are not limited to fitting nonlinear functions of only this form. For example, see

problem 3 in the Exercises (it is more like an example with step-by-step instructions)

to find out how to fit a function such as x(t) = Ceλ1t sinλ2t.

7.1.5 Interpolation

Interpolation is the technique of finding a functional relationship between variables

such that a given set of discrete values (data points) of the variables satisfy that

relationship.1 Usually, we get a finite set of data points from experiments. When

we want to pass a smooth curve through these points or find some intermediate

points, we use the technique of interpolation. Interpolation is NOT curve fitting,

in that it requires the interpolated curve to pass through all the data points.

In MATLAB, you can interpolate your data using splines or Hermite inter-

polants on the fly. All you have to do is plot the raw data and use spline interpolant
or hermite interpolant from the Basic Fitting options that you can invoke from the

Tools menu of your figure window (see Fig. 7.1 on page 214).

In its programming environment, MATLAB provides the following functions to

facilitate interpolation:

1I asked some of my colleagues to define interpolation. One gave me this definition, “Re-
verse engineering an entity of higher dimensionality from information about some entity of lower
dimensionality within an identified domain.”
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interp1 One-dimensional data interpolation, i.e., given yi at xi, finds yj at

desired xj from yj = f(xj). Here f is a continuous function that is found from

interpolation. It is called one-dimensional interpolation because y depends on

a single variable x. The calling syntax is

ynew = interp1(x,y,xnew,method),

where method is an optional argument discussed after the descriptions of

interp2 and interp3.

interp2 Two-dimensional data interpolation, i.e., given zi at (xi, yi), finds zj at

desired (xj , yj) from z = f(x, y). The function f is found from interpolation.

It is called two-dimensional interpolation because z depends on two variables,

x and y.

znew = interp2(x,y,z,xnew,ynew,method).

interp3 Three-dimensional analogue of interp1, i.e., given vi at (xi, yi, zi),

finds vj at desired (xj , yj , zj).

vnew = interp3(x,y,z,v,xnew,ynew,znew,method).

In addition, there is an n-dimensional analogue, interpn, if you ever need it.

In each function, you have an option of specifying a method of interpolation. The

choices for method are nearest, linear, piecewise cubic, or spline. The choice of the

method dictates the smoothness of the interpolated data. The default method is

linear. To specify cubic interpolation instead of linear, for example, in interp1,

use the syntax

ynew = interp1(x,y,xnew,’pchip’).

The example at the end of this section shows how to use interp1. It also

compares results obtained from different interpolation methods.

There are some other important interpolation functions worth mentioning:

spline One-dimensional interpolation that uses cubic splines to find yj at de-

sired xj , given yi at xi. Cubic splines fit separate cubic polynomials between

successive data points by matching the slopes as well as the curvature of each

segment at the given data points. The calling syntax is

ynew = spline(x,y,xnew,method).

There are other variants of the calling syntax. It is also possible to get the

coefficients of the interpolated cubic polynomial segments that can be used

later. See the on-line help.

interpft Fast Fourier transform (FFT)–based 1-D data interpolation. This

is similar to interp1 except that the data is interpolated first by taking the

Fourier transform of the given data and then calculating the inverse transform

using more data points. This interpolation is especially useful for periodic

functions (i.e., if values of y are periodic). See the on-line help.
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Example:

There are two simple steps involved in interpolation—providing a list (a vector)

of points at which you wish to get interpolated data (this list may include points

at which data is already available), and executing the appropriate function (e.g.,

interp1) with the desired choice for the method of interpolation. We illustrate

these steps through an example on the x and y data given in the following table.

x 0 0.785 1.570 2.356 3.141 3.927 4.712 5.497 6.283
y 0 0.707 1.000 0.707 0.000 −0.707 −1.000 −0.707 −0.000

Step 1: Generate a vector xi containing desired points for interpolation.

% take equally spaced fifty points.

xi = linspace(O,2*pi,50);

Step 2: Generate data yi at xi.

% generate yi at xi with piecewise cubic interpolation.

yi = interp1(x,y,xi,’pchip’);

Here, ’pchip’ is the choice for the interpolation scheme. The other schemes

we could use are nearest, linear, and spline. The data generated by each

scheme is shown in Fig. 7.6, along with the original data. The corresponding

curves show the smoothness obtained.
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Figure 7.6: 1-D interpolation of data with different schemes: (a) nearest, (b) linear,
(c) piecewise cubic, and (d) spline.

Caution: In all interpolation functions, it is required that the input data

points in x be monotonic (i.e., either continuously increasing or decreasing).
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7.2 Correlations

Regression analysis or curve fitting gives us a relationship between two or more

variables that can be used to predict the value of the dependent variable for any

value of the independent variable within the limits of validity of the regression.

The data that is used for regression rarely follows the relationship exactly; there is

always some scatter of data around the regression curve. A measure of this scatter

or dispersion provides a good metric of how good the arrived relationship is. Such

a measure is provided by the correlation coefficient. In this book, we cannot afford

to get into a discussion on how the formula for correlation coefficient is derived but

the urge you to look up any reasonable textbook on statistics if you are not familiar

with this term.

MATLAB provides a function for computing the correlation coefficient between

two variables or a set of variables pairwise if you arrange the data for each variable

columnwise in a matrix:

corrcoef: takes an m×n array A as the input, with its columns as observations

of different variables of interest, and gives back an n × n matrix of correlation

coefficients with the (i, j)th entry as the correlation between the ith variable (ith

column) and the jth variable (jth column). Thus all diagonal entries of the output

give a correlation of a variable with itself which is obviously unity.
For on-line help

type:

help corrcoef Correlation coefficients are based on linear correlation between two variables

(pairwise columns of the input matrix). Hence, if you have a nonlinear relationship

between two variables, you should think of transforming the data in appropriate

form (e.g., logarithm of the data), so that a linear correlation can be established. If

you have data for only two variables, say x and y, then you can find the correlation

coefficient directly with the command, corrcoef(x,y), rather than putting them

in a two-column array.

As a simple example, let us consider the data we used for linear regression on

page 214, i.e., x=[5 10 20 50 100], and y=[15 33 53 140 301]. The example

session below shows how to find the correlation coefficient using x and y as vectors

as well as two columns of a matrix.

Input x and y as vectors and find the
correlation coefficient between them.

 
 

You can, alternatively, create a matrix 
A with x and y as columns of A and 
find the correlation coefficient 
between the columns of A.

Note that the off-diagonal terms are 
the correlation coefficients between  
x and y (r(1,2)), and y and x 
(r(2,1)). Obviously, r12 = r21.

>> x=[5 10 20 50 100];
>> y=[15 33 53 140 301];
>> r = corrcoef(x,y)

r =

    1.0000    0.9989
    0.9989    1.0000

>> A = [x' y'];
>> r = corrcoef(A)

r =

    1.0000    0.9989
    0.9989    1.0000
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The answer MATLAB gives is a 2× 2 symmetric array with r(1,1)=r(2,2)=1

and r(1,2)=r(2,1)=0.9989. So, the correlation coefficient between x and y is

0.9989, a very high value that is expected from such a good fit (see Fig. 7.2).

We can also find the correlation coefficient between two variables using the

basic definition of the coefficient (without using the function corrcoef). But that

requires first finding a linear regression between the two variables. This is because

the definition of the correlation coefficient involves calculation of the standard error

of estimate as explained below.

The correlation coefficient or the coefficient of linear correlation r is defined in

terms of the ratio of explained variation
∑

(yfitted − ȳ)2 (ȳ is the mean value of y)

and the total variation
∑

(y−ȳ)2:

r =

√
explained variation

total variation
=

√∑
(yfitted − ȳ)2∑

(y−ȳ)2
=

√
1−

S2
y,x

S2
y

(7.1)

where

S2
y,x =

∑
(yi − yfitted)2

N

is the standard error of estimate in y for given x, and Sy is the standard deviation

of the data in y.2 If the sample size N is small then we generally use N −1 in place

of N . Here, yfitted is the functional relationship (i.e., equation for y(x)) found from

linear regression.

The regression we carried out on page 214 gave us the linear regression line (see

Fig. 7.2), yfitted = 3x− 2.4, for our example data of x and y. We can now compute

r in MATLAB using the formulas given by eqn. (7.1):

x=[5 10 20 50 100]’; % x data

y=[15 33 53 140 301]’; % y data

N = length(x); % number of data points

y_fitted = 3*x - 2.4; % from linear regression

err = y-y_fitted; % error in y

Syx = sqrt(sum(err.^2)/(N-1)); % standard error estimate

Sy = std(y); % standard deviation of y

r = sqrt(1-Syx^2/Sy^2); % correlation coefficient

By executing this code, we do get r=0.9989 (try it). Thus we verify the value

computed by MATLAB’s function corrcoef (not that we doubt it). Now, we

realize that it is very easy to compute r with the built-in function corrcoef. We

can, therefore, use the value of r thus computed and find the standard error of

estimate Sy,x, from Sy,x = Sy
√

1− r2. Sy,x is a useful quantity. We can draw lines

parallel to the regression line displaced vertically by ±Sy,x, ±2Sy,x, and ±3Sy,x.

The statistical theory assures us that the bands enclosed by these lines will include

about 68%, 95%, and 99.7% of the data, respectively.

The functions, corrcoef, has several optional input and output arguments. See

the on-line help for details.

2There are alternate formulas for computing r. See any standard book on statistics (e.g.,
Murray R. Spiegel, Theory and Problems of Statistics, Schaum’s Outline Series).
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7.2.1 Goodness of fit or the coefficient of determination, r2

The square of the correlation coefficient is called the coefficient of determination

or the goodness of fit of a regression line. Generally, it is also referred to as the

R2-value or R2 of a fit (written with capital R).

From eqn. (7.1), it should be clear that the coefficient of determination, or the

R2-value, is the proportion of the explained variation with respect to the total

variation. In other words, the computed r2 tells us what fraction of the total

variation is explained by the fitted relationship between the two variables. Thus,

if r = 0.9989, as found in our example, then the coefficient of determination, r2 =

0.9978, indicates that as much as 99.78% of the variation in y is explained by the

regression line y = 3x− 2.4. This is a very high value of R2.

Now let us see how we can find R2 values for curve-fits in MATLAB. From the

definition of R2, we have

R2 ≡ r2 = 1−
∑

(yfitted − y)2∑
(y − ȳ)2

.

Noting that
∑

(yfitted−y)2 is the sum of squares of residuals (call it S2
r ) and

∑
(y−

ȳ)2 is (N − 1) times the variance of y (variance is the square of the standard

deviation), we can find R2 from

R2 = 1−
∑

(residuals)2

(N − 1)var(y)
= 1− S2

r

(N − 1)var(y)
. (7.2)

MATLAB’s curve-fitting tool readily provides the norm of residuals, i.e., the value

of Sr (=
√∑

(yfitted − y)2.

Let us get back to Example 1 on page 214 and try a quadratic fit on the same

data. MATLAB gives us the fit as y = 0.0053x2 + 2.4x + 4.5, with a norm of

residuals Sr = 4.6902 (try it). We can readily find the R2-value with the following

commands (assuming you have input the data x and y):

Sr = 4.6902; N = length(y);

Rsq = 1 - Sr^2/((N-1)*var(y));

MATLAB gives the result as Rsq = 0.9996, which indicates a better fit than the

linear one. Now, we have 99.96% of the data (practically all) closest to the fitted

quadratic curve.

Causality

A very high value of R2 does not necessarily indicate high degree of causality. It

is necessary to understand that regression analysis and the associated measures of

correlation or goodness of fit only relate to the dispersion in the data and how close

the data is to a fitted model. Causality is not embedded in regression analysis; it

comes from the understanding of the physical phenomenon we are trying to model.

Only that kind of understanding can help us identify meaningful independent and

dependent variables. Making a good fit between the data on rising corruption in the

world and the average rise in temperature over the years may be complete nonsense.

Maybe not.
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7.3 Statistics
Tools menu of
figure windowFor performing simple data analysis tasks, such as finding mean, median, and stan-

dard deviation, MATLAB provides an easy graphical interface that you can activate

from the Tools menu of the figure window. First, you should plot your data in

the form you wish (e.g., scatter plot, line plot). Then, go to the figure window and

select Data Statistics from the Tools pull-down menu. MATLAB shows you the

basic statistics of your data in a separate window marked Data Statistics. You can

show any of the statistical measures on your plot by checking the appropriate box

(see Fig. 7.7).

Figure 7.7: Simple data statistics are available to you with the click of a button in
MATLAB from the Tools menu of the figure window.

However, you are not limited to this simple interface for your statistical needs.

Several built-in functions are at your disposal for statistical calculations. These

functions are briefly discussed here.

All data analysis functions take both vectors and matrices (including multi-

dimensional ones) as arguments. When a vector is given as an argument, it does

not matter whether it is a row vector or a column vector. However, when a matrix

is used as an argument, the functions operate columnwise on the matrix and give as

output a row vector that contains results of the operation on each column. In the

following description of the functions, we will use two arguments in the examples—a

row vector x and a matrix A that are given below.

x =
[

1 2 3 4 5
]
, A =


6 5 −2
7 4 −1
8 3 0
9 2 1

10 2 2

.
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mean gives the arithmetic mean x̄ or the average of the data.

Example: mean(x) gives 3 while mean(A) results in [8 3.2 0].

median gives the middle value or the arithmetic mean of the two middle values

of the sorted data (in increasing order).

Example: median(x) gives 3 while median(A) gives [8 3 0].

std gives the standard deviation σ based on n−1 samples, i.e., σ =

√∑
(xi−x̄)2

n−1 .

A flag of value 1 is used as an optional argument (e.g., std(x,1)) to get the

standard deviation based on n samples.

Example: std(x) gives 1.5811, std(x,1) gives 1.4142, and std(A) gives

[1.5811 1.3038 1.5811].

var gives the variance (square of the standard deviation σ)

Example: var(x) gives 2.5, var(x,1) gives 2, and var(A) gives [2.5 1.7 2.5].

max finds the largest value in the data set.

Example: max(x) gives 5 and max(A) gives [10 5 2].

min finds the smallest value in the data set.

Example: min(x) gives 1 and min(A) gives [6 2 −2].

sum computes the sum Σxi of the data.

Example: sum(x) gives 15 while sum(A) gives [40 16 0].

cumsum computes cumulative sum Sj =
∑j
i=1 xi.

Example: cumsum(x) produces [1 3 6 10 15].

prod computes the product
∏
xi of all data values.

Example: prod(x) gives 120 and prod(A) gives [30240 240 0].

cumprod computes cumulative product Pj =
∏j
i=1 xi.

Example: cumprod(x) produces [1 2 6 24 120].

sort sorts the data in ascending (default) or descending order. An optional

output argument (e.g., [y,k]=sort(x)) gives the indices of the sorted data

values.

Example: Let z=[22 18 35 44 9]. Then, sort(z) results in [9 18 22 35 44],

and [y,j]=sort(z) gives y=[9 18 22 35 44] and j=[5 2 1 3 4], where elements

of j are the indices of the data in z that follow ascending order. Thus, z=z(j)

will result in a sorted z.

The index vector of the sorted data is typically useful in a situation where

you want to sort a few vectors or an entire matrix based on the sorting order

of just one vector or column. For example, say you have an m× n matrix B

that you want to sort according to the sorted order of the second column of

B. You can do this simply with the commands:

[z,j] = sort(B(:,2)); Bnew = B(j,:).
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For a matrix A, use sort(A,1) to sort A by rows and sort(A,2) to sort

by columns. To sort in descending order, use sort(A,’descend’)—same as

sort(A,1,’descend’) or sort(A,2,’descend’).

Note: You can also get the data in descending order by first sorting the data

in the default ascending order and then flipping it upside down with flipud.

Try flipud(sort(A)) to get all columns of A arranged in descending order.

sortrows sorts the rows of a matrix.

diff computes the difference between the successive data points. For example,

y=diff(x) results in a vector y where yi = xi+1 − xi. The resulting vector

is one element shorter than the original vector. diff can be used to get

approximate numerical derivatives. See the on-line help on diff.

trapz computes the integral of the data (area under the curve defined by the

data) using the trapezoidal rule.

Example: trapz(x) gives 12 while trapz(A) gives [32 12.5 0].

cumtrapz computes the cumulative integral of the data. Thus, y=cumtrapz(x)

results in a vector y where yi = Σtit1xi∆ti (here the data xi is assumed to be

taken at ti, e.g., x1 = x(t1), x2 = x(t2)).

Example: cumtrapz(x) results in [0 1.5 4 7.5 12].

In addition to these most commonly used statistical functions, MATLAB also

provides functions for correlation and cross-correlation, covariance, filtering, and

convolution. See the on-line help on datafun. If you do a lot of statistical analysis,

then it may be worth getting the Statistical Toolbox.

EXERCISES

1. Linear and quadratic curve fits: The following data is given to you.[
x
y

]
=

[
0 0.15 0.2 0.30 0.4 0.52 0.6 0.70 0.8 0.90 1
0 1.61 2.2 3.45 4.8 6.55 7.8 9.45 11.2 13.05 15

]
• Enter vectors x and y and plot the raw data using plot(x,y,’o’).

• Click on the figure window. Select Basic Fitting from the Tools menu of the
figure window. Once you get the Basic Fitting window, check the box for
linear fit. In addition, check the boxes for Show equations, Plot residu-
als (select a scatter plot rather than a bar plot option), and Show norm of
residuals.

• Now, do a quadratic fit by checking the quadratic fit box and all other boxes
as you did for the linear case.

• Compare the two fits. Which fit is better? There isn’t really a competition, is
there?

2. Correlation coefficient and R2-value: Consider the data given in Problem 1
again.

• Find the correlation coefficient between x and y using corrcoef.
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• Use linear regression and find the relationship between x and y using x as the
independent variable. Plot the fitted line along with the raw data (plot raw
data as discrete points).

• Use the mathematical definition of the correlation coefficient, eqn. (7.1), and
find the value of r.

• Using the standard error of estimate Sy,x, draw four more lines, y ± Sy,x and
y± 2Sy,x on the same graph. Count the number of data points within the two
bands and compute the percent of data enclosed within each band. Does the
percentage correspond to 68% and 95% respectively?

• Compute the R2-value for the linear fit using eqn. (7.2) and compare the value
with r2.

• Try a quadratic fit and find the corresponding value of R2. Is this fit better
than the linear fit?

3. A nonlinear curve fit: Enter the following experimental data in the MATLAB
workspace.

t = [0 1.40 2.79 4.19 5.58 6.98 8.38 9.77 11.17 12.57];

x = [0 1.49 0.399 -0.75 -0.42 0.32 0.32 -0.10 -0.21 0];

You are told that this data comes from measuring the displacement x of a damped
oscillator at time instants t. The response x is, therefore, expected to have the
following form:

x = Ce−λ1t sin(λ2t),

where the constants C, λ1, and λ2 are to be determined from the experimental data.
Thus, your job is to fit a curve of the given form to the data and find the constants
that give the best fit.

• First, see a built-in demo for nonlinear curve fits by typing fitdemo.

• Write a function that computes x given some initial guess of the values of the
constants C, λ1, and λ2 as follows.

function er_norm = expsin(constants,t_data,x_data);

% EXPSIN computes the error norm from the fitted data

% given constants C, lambda1 and lambda2

t = t_data’;

x = x_data’; % make sure t & x are columns

C = constants(1); % unpack constants

l1 = constants(2);

l2 = constants(3);

xnew = C * exp(-l1 * t) .* sin(l2 *t); % evaluate your x

er_norm = norm(xnew - x) % compare with data and compute error

• Now you can find the best constants iteratively by minimizing the norm of
the error with the function fminsearch as follows.

constants = [1 0.1 0.8]; % initial guess of [C, l1, l2]

constants = fminsearch(’expsin’,constants,[],t,x);

• Now that you have the best fit constants, evaluate your formula at the given t
and plot the fitted curve along with the given data. That’s it.



8. Differential
Equations

For mathematical modeling of physical phenomena and processes, nothing is per-

haps more useful than differential equations. Unfortunately, for most science and

engineering students, nothing in college level mathematics is more vexing or intim-

idating than differential equations. Well, your saviour is here! MATLAB certainly

takes away much of the pain and anguish and makes playing with differential equa-

tions a lot more fun.

Differential equations come in two distinct flavors: Ordinary Differential Equa-

tions (ODEs) and Partial Differential Equations (PDEs), depending on whether

they involve ordinary derivatives or partial derivatives. Both could be linear or

nonlinear depending on the powers of derivatives and variables that appear in the

equation. Nonlinear differential equations require nonlinear effort for understand-

ing them, solving them, and even interpreting their results. Fortunately, numerical

solution strategies, as you will see soon, do not make much fuss about this distinc-

tion (particularly in the case of ODEs) and give us incredible power to deal with

nonlinear differential equations.

Given the promise in the title of this book, we simply do not have the luxury

to deal with solution of PDEs here. We will focus on ODEs and make sure that

by the end of this chapter you feel reasonably confident of solving various kinds of

ODEs with MATLAB. We assume that you have some knowledge of ODEs and that

you know the basic theory to distinguish between boundary value problems (BVPs)

and initial value problems (IVPs). Because of their importance and prevalence in

science and engineering problems, we will mostly focus on IVPs. However, even

before we get there, let us first discuss numerical integration which arises in solving

the simplest type of ODEs: y′ = f(x) ⇒ y(x) =
∫
f(x) dx. Some special type of

differential equations that appear as y′+p(x)y = q(x) also reduce to the same form,

y(x) =
∫
f(x) dx, via the so called integrating factor with f(x) = 1

µ(x)

∫
µ(x)q(x) dx

where µ(x) = e
∫
p(x) dx is the integrating factor.



232 Differential Equations

8.1 Numerical Integration (Quadrature)

Numerical evaluation of the integral
∫
f(x) dx is also called quadrature. Most often,

the integrand f(x) is quite complicated and it may not be possible to carry out the
For on-line help

type:

help funfun integration analytically. In such cases, we resort to numerical integration. However,

we can only evaluate definite integrals, i.e.,
∫ b
a
f(x) dx, numerically. There are

several methods for numerical integration. Consult your favorite book1 on numerical

methods for a discussion of methods, formulas, and algorithms. MATLAB provides

several built-in functions for numerical integration. We now discuss the most useful

ones here and show how to use them.

Simple or 1-D integration

The simplest integral is the integration of a function of one variable over a specified

range (definite integral) of that variable, such as
∫ x=b

x=a
f(x) dx (proper integral) or∫ t=∞

t=0
g(t) dt (improper integral). Such integrals can be easily evaluated numerically

with the MATLAB ’s function integral.

integral integrates a specified function over specified limits, based on global
For on-line help

type:

help integral adaptive quadrature. The adaptive algorithm seeks to improve accuracy by

adaptively selecting the size of the subintervals (as opposed to keeping it

constant) within the limits of integration while evaluating the sums that make

up the integral. This function can handle simple singularities of the integrand

at the limit points. For example, you can compute
∫ 2

0
log(x) dx even though

log(x) is not defined at x = 0.

quad integrates a specified function over specified limits, based on the adaptive
For on-line help

type:

help quad Simpson’s rule. The adaptive rule seeks to improve accuracy by adaptively

selecting the size of the subintervals (as opposed to keeping it constant) within

the limits of integration while evaluating the sums that make up the integral.

quadl (the last letter is an ell, as in QUADL, not 1) uses adaptive Lobatto

quadrature for evaluating the integral. This one is more accurate than quad

but it also uses more function evaluations. It may, however, be more efficient

if your integrand is a smooth function.

quadgk uses high-order, global adaptive Gauss–Kronrod quadrature for esti-

mating the integral with high accuracy. It can handle singularities at the end

points (just like integral). It is specifically useful for oscillatory integrands

that may be hard to handle with other quadrature functions.

The first function, integral, is the new workhorse (since 2012) for quadrature

in MATLAB. It is quite versatile and accurate. Hence let us learn how to use it

first.

1Some of my favorites: Applied Numerical Analysis by Gerald and Wheatley, Addison Wesley,
and Numerical Recipes in C: The Art of Scientific Computing, by Press, Flannery, Teukolski, and
Vetterling, Cambridge University Press.
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Quadrature with integral

The general call syntax for integral is as follows:

optional parameter pairs
(’parameter name’, value)

limits of
integration

y = integral(@your_function, a, b, optional_pair,...)

the integral
handle of

your function
containing

the integrand f(x)

As shown in the syntax, this function requires you to supply the integrand as a

user-written function. The optional input arguments are specified pairwise by first

specifying the name of the optional parameter and then its value. We will discuss

these optional parameters a little later. Let us first get going with some examples.

The steps involved in numerical integration using the built-in functions discussed

are:

Step 1: Write a function that returns the value of the integrand f(x) given the

value of x. Your function should be able to accept the input x as a vector and,

correspondingly, produce the value of the integrand (the output) as a vector.

Anonymous functions are a good choice for most integrands. However, you

may want to create a .m function if your integrand is a complicated function

or you want to use it over multiple sessions of computation.

Step 2: Specify the limits of integration appropriately. For converging integrals,

these quadrature functions (e.g., integral) can also handle improper limits.

Example:

Let us compute the following integral∫ 1/2

0

e−x
2

dx.

This integral is closely related to the error function, erf. In fact,∫ x

0

e−x
2

dx =

√
π

2
erf(x).

Because MATLAB also provides the error function, erf, as a built-in function, we

can evaluate our integral in closed form (in terms of the error function) and compare

the results from numerical integration.

Let us use integral in its simplest form (i.e., without optional arguments). We

first define the integrand as a function of x and save it as an anonymous function

named erfcousin (you can name it anything you want). Then we use integral,

passing our integrand function as the first input argument and the given limits as

the next input arguments, and get the desired integral as the output.
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>> erfcousin = @(x) exp(-x.^2);    %define the integrand function

>> y = integral(erfcousin,0,1/2)   %integrate from a=0 to b=1/2

y =                                %use format long e for 16 digits

     4.612810064127925e-01

Note that the output contains 16 digits and an exponent. We have used format

long e before this computation for getting the display of the number in this format.

The exact result for the integral, up to 16 decimal places, is 0.4612810064127924.

As you can see, integral does very well with accuracy in computing the integral.

Optional arguments

All quadrature functions in the integral family take optional arguments in pairs,

the first being the name of the optional parameter and the second, the value of

the parameter. The optional parameters are Relative tolerance (RelTol), absolute

tolerance (AbsTol), flag for array valued integrand (ArrayValued), and points on

the path of the integral (Waypoints). The first two are important for carrying out

computation with higher accuracy. You can set their value to the desired level if

you understand these tolerances (see page 245 for a brief discussion, or see on-line

documentation on integral to understand what these tolerances mean). In the

preceding example, we have used the default values of tolerances which are 10−6 for

the relative tolerance, and 10−10 for the absolute tolerance. If your integrand is not

a scalar valued function but an array, then you need to set the flag ArrayValued to

1. If you need to include certain points on the path of the integral (generally used

in contour integration in the complex plane), then you specify those points with the

optional parameter Waypoints.

Quadrature with quadgk

This function is generally as good as integral for most integral estimates. It uses

Gauss–Kronrod pairs for nodes and weights inside an interval of integration for

estimating accurate partial sums. The syntax of quadgk is the same as that of

integral except that this function can also give you an approximate error bound

for the computed integral as an optional output:

y = quadgk(@your_fun, a, b); %simplest use of quadgk

[y, errbnd] = quadgk(@your_fun, a, b) %output includes error bound

So, if you need an estimate of the error bound then you should use quadgk. For

a comparison of these functions on relatively easy integrals, please see the discussion

at the end of this section.
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Quadrature with quad

Although we recommend using integral instead of quad for better accuracy, the

good old quad holds its own on account of simplicity and certain functionality. This

function uses the conceptually simpler Simpson’s rule in an adaptive and recursive

algorithm. You can see the entire function with type quad.m. It also keeps track

of the number of function evaluations (not available in integral) and outputs the

same if you ask for it. This functionality is good for tracking computational effort

when you tighten the tolerance (e.g., tol = 10−9), especially in the case of rapidly

varying integrands. If you are not happy with the accuracy of quad and still want

to track the number of function evaluations, you can use its more illustrious cousin

quadl.

The general call syntax for both quad and quadl is as follows:

optional argumentslimits of
integration

integral_y = quad(@your_function, a, b, tol,trace)

the integral your function
containing

the integrand f(x)

handle of

The optional input argument tol specifies absolute tolerance (the default value

is 10−6). A nonzero value of the other optional argument, trace, shows some

intermediate calculations (see on-line help) at each step. As mentioned above, one

special thing about these functions is that they have an optional output for the

number of function evaluations that are performed to get the answer. Thus,

[y, function_count] = quad(@your_function, a, b)

integrates the function coded in your_function over the integration limit from a

to b using the default tolerance and returns the value of the integral in y and the

number of function evaluations in function_count. You could change the default

tolerance to a desired value, say 10−12, and compute the integral with the command

[y, function_count] = quad(@your_function, a, b, 10^(-12))

A comparison of quadrature functions

Here is a table showing the results of a few experiments with various quadrature

functions. We use all the four functions mentioned above and tabulate their results

for

y =

∫ 1

0

e−x
2

dx.

Please note that this integral is equal to
√
π

2 erf(1), where erf(1) is easily computed

with MATLAB function erf(1). In the table, we list the value of the integral, %

error compared with the analytical value given in the last row, and the number of

function evaluations where applicable.
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Function AbsTol Answer % Error F-evals

quad default (10−6) 7.468241807264250e-01 6.4157 ×10−6 13
10−8 7.468241328544518e-01 5.6271 ×10−9 37
10−12 7.468241328124285e-01 1.9984 ×10−13 233

quadl default (10−6) 7.468241339884472e-01 1.5747 ×10−7 18
quadgk default (10−10) 7.468241328124271e-01 2.2204 ×10−14 N/A
integral default (10−10) 7.468241328124271e-01 2.2204 ×10−14 N/A√
π

2 erf(1) N/A 7.468241328124270e-01 0 N/A

Table 8.1: A comparison of performance of quad, quad, quadgk, and integral

functions for computing
∫ 1

0
e−x

2

dx. The last row gives the reference value for error
computation.

Note that for this simple integration, quadgk and integral outperform quad

and quadl by a huge margin with default tolerance settings. In fact, quad does not

compete even with the absolute tolerance set to 10−12.

Let us take another example, the integral of an oscillatory function, and carry out

the same exercise of computing the integral with different functions and comparing

their performance. For this example, let us take

y =

∫ π

0

e−ax sinωxdx

with a = 1 and ω = 20. The exact integral can be easily found:

y =
1

a2 + ω2

(
ω − e−aπ(a sinπω + ω cosπω)

)
.

Evaluating this expression with a = 1 and ω = 20, we get y = 20
401 (1− e−π) =

4.772000407661984 × 10−2 up to 15 decimal places. We can write an anonymous

function for computing the integral and use with the various quadrature functions.

For example,

osc_fun = @(x) exp(-x).*sin(20*x);

y = integral(os_fun, 0, pi);

computes the intended integral with the function integral. The calculated values

with different functions, similar to Table 8.1, are shown below.

Function AbsTol Answer % Error F-evals

quad default 4.771997229727781e-02 -6.6595 ×10−5 245
quadl default 4.772000407174040e-02 -1.0225 ×10−8 528
quadgk default 4.772000407661974e-02 -1.9984 ×10−13 N/A
integral default 4.772000407661974e-02 -1.9984 ×10−13 N/A
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8.1.1 2-D and 3-D integration

2-D integrals of the form ∫ ymax

ymin

∫ xmax

xmin

f(x, y) dx dy

are often called double integrals, and similarly, 3-D integrals of the form∫ zmax

zmin

∫ ymax

ymin

∫ xmax

xmin

f(x, y, z) dx dy dz

are called triple integrals. MATLAB provides equivalents of 1-D quadrature function

integral to carry out double and triple integration:

integral2 evaluates 2-D or double integrals by integrating a specified function

(the integrand) of two variables over specified limits in 2 dimensions. The

internal limits of integration can be functions of the variable that is used for

outer integration, e.g.,
For on-line help

type:

help integral2∫ b

a

∫ y=g2(x)

y=g1(x)

f(x, y) dy dx.

integral3 is the equivalent of integral2 for 3-D integrals.

The calling syntax for both integral2 and integral3 is the same as that for

integral with appropriate numbers of integration limits. For example, to use

integral2, you need to use a command of the following form:

I = integral2(@fxy fun, xmin, xmax, ymin, ymax, optional pair,...),

where optional pair stands for optional arguments that appear in pairs (name and

value of an optional parameter such as relative tolerance or absolute tolerance,

etc.) Please see the brief discussion on Optional arguments on page 234 and

on-line documentation or help to find details of these arguments. The user-defined

integrand function, fxy fun, must be written such that it can accept a vector x and

y while evaluating the integrand.

You have to be careful in defining inner integral limits in 2D and 3D as they

can be complicated functions if the domain is not rectangular or cuboid.

Example:

Let us compute the following integral

I =

∫ 1

−1

∫ 2

0

(1− 6x2y) dx dy.

It is fairly simple to verify analytically that I = 4. Let us see how integral2

performs on this integral.
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>>  fxy = @(x,y) 1-6*x.^2.*y;

>>  I = integral2(fxy,0,2,-1,1)    

I =

    4.0000

Create the integrand as an anonymous 
function. Note that x and y are taken  
as vector arguments. Next, run 
integral2 with the given limits.

Caution: It is important to pay attention to the order of integration when us-

ing integral2 or integral3. Please note that the limits of integration are specified

in the order from outermost integral to innermost integral, i.e.,∫ xmax

xmin

(∫ ymax

ymin

f(x, y) dy

)
dx.

So, even if you have a rectangular domain of integration, i.e., a ≤ x ≤ b and c ≤
y ≤ d, you cannot exchange the limits of integration of x and y in the syntax. The

confusion generally arises from the fact that analytically, the order of integration

does not matter. Thus,

I =

∫ 1

−1

(∫ 2

0

(1− 6x2y) dx

)
dy =

∫ 2

0

(∫ 1

−1

(1− 6x2y) dy

)
dx = 4.

However, the two commands with exchanged limits:

I = integral2(fxy,0,2,-1,1) and I = integral2(fxy,-1,1,0,2)

are not the same; they will give completely different results, unless the function fxy

happens to be symmetric with respect to x and y.

Non-rectangular domains

Integration over non rectangular domains is not a problem as both integral2 and

integral3 accept functions as limits of integration. You just need to be careful

in specifying the inner limits. As an example, let us find the area between the

line y = 2x and the curve y = x2 starting from the origin (0, 0) to the point of

intersection (2, 4). Thus the integral we want to evaluate is∫ x=2

x=0

∫ y=2x

y=x2

dy dx =

∫ 2

0

(
y
∣∣∣2x
x2

)
dx =

∫ 2

0

(2x− x2) dx = (x2 − x3

3
)
∣∣∣2
0

=
4

3
.

Here, we are integrating over y first and then over x, the order that integral2
likes. To specify the limits on y, we need to create functions for y = x2 and y = 2x.
Thus, we use the following commands to compute the desired area.

fxy = @(x,y) x./x; % f(x,y)=1 but need vectorized 1

ymin = @(x) x.^2; % ymin is a function of x

ymax = @(x) 2*x; % ymax is a function of x

area = integral2(fxy,0,2,ymin,ymax)

Note that although the integrand here is f(x, y) = 1, we have used f(x, y) = x/x

so that it is vectorized (a requirement of all quadrature functions).

Triple integration follows the same logic, hence we do not discuss it explicitly

here.
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8.2 Solution of ODEs for Initial Value Problems

There is a separate suite of ordinary differential equation solvers for initial value

problems (IVPs) in MATLAB. Long ago, MATLAB used to have just two built-in
For on-line help

type:

help funfunfunctions for solution of ODEs—ode23 and ode45. Now there are several additional

functions that can also handle stiff equations. Although the various choices now

available have increased the versatility of MATLAB’s ODE solving capability, ode23

and ode45 remain the workhorses of the suite. In the new version of MATLAB,

even ode23 and ode45 have changed and become more versatile. The versatility,

however, comes with a cost; the more you want from these functions, the more you

have to understand about their complex input structure. At this point, we will

not go into such intricate details. We will look at the most straightforward and,

perhaps, the most used form for the MATLAB’s ODE solvers.

The functions ode23 and ode45 are implementations of second-/third-order and

fourth-/fifth-order Runge–Kutta methods, respectively. Solving most ODEs using

these functions in their simplest form (without any optional arguments) involves

the following four steps:

1. Write the differential equation(s) as a set of first-order ODEs. For

ODEs of order ≥ 2, this step involves introducing new variables and recasting

the original equation(s) in terms of first-order ODEs in the new variables.

Basically, you need the equation in the vector form ẋ = f(x,t), where x =

[x1 x2 . . . xn]T . In expanded form, the equation is


ẋ1

ẋ2

...
ẋn

 =


f1(x1, x2, . . . , xn, t)
f2(x1, x2, . . . , xn, t)

...
fn(x1, x2, . . . , xn, t)

 .

2. Write a function to compute the state derivative. The state derivative

ẋ is the vector of derivatives ẋ1, ẋ2, . . . , ẋn. Therefore, you have to write

a function that computes f1, f2, . . . , fn, given the input (x, t) where x is a

column vector, that is, x = [x1 x2 . . . xn]T . Your function must return

the state derivative ẋ as a column vector.

3. Use the built-in ODE solvers ode23 or ode45 to solve the equations.

Your function written in Step 2 is used as an input to ode23 or ode45. The

syntax of use of ode23 is shown next. To use ode45 just replace ode23 with

ode45.
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[time, solution] = ode23(’your_function’,tspan, x0)

time vector

 time span
[t0   tfinal]

solution matrix

initial conditions

User-written function with title line:
xdot = your_function(t, x);

This function contains the ODEs
you want to solve.

4. Extract the desired variables from the output and interpret the

results. For a system of n equations, the output matrix solution contains

n columns. You need to understand which column corresponds to which

variable in order to extract the correct column, if you want to plot a variable

with respect to, say, the independent variable time.

Here are two examples.

8.2.1 Example 1: A first-order linear ODE

Solve the first-order linear differential equation

dx

dt
= x+ t (8.1)

with the initial condition

x(0) = 0.

Step 1: Write the equation(s) as a system of first-order equations: The

given equation is already a first-order equation. No change is required.

ẋ = x+ t.

Step 2: Write a function to compute the new derivatives: The function

should return ẋ given x and t. Here is the function:

function xdot = simpode(t,x);

% SIMPODE: computes xdot = x+t.

% call syntax: xdot = simpode(t,x);

xdot = x + t;

Write and save it as an M-file named simpode.m.

Step 3: Use ode23 to compute the solution: The commands as typed in the

command window are shown next. These commands could instead be part of

a script file or even another MATLAB function. Note that we have not used

the optional arguments tol or trace.
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>>  tspan = [0  2];                    % specify time span 

>>  x0 = 0;                            % specify x0

>> [t,x] = ode23(’simpode’,tspan,x0);  % now execute ode23

Step 4: Extract and interpret results: The output variables t and x contain

results—t is a vector containing all discrete points of time at which the solution

was obtained, and x contains the values of the variable x at those instances

of time. Let us see the solution graphically:

>> plot(t,x)                    % plot t vs. x 

>> xlabel(’t’)                  % label x-axis

>> ylabel(’x’)                  % label y-axis    

The plot generated by the preceding commands is shown in Fig. 8.1.
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Figure 8.1: Numerical solution of the equation using ode23.

8.2.2 Example 2: A second-order nonlinear ODE

Solve the equation of motion of a nonlinear pendulum
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θ̈ + ω2 sin θ = 0 ⇒ θ̈ = −ω2 sin θ (8.2)

with the initial conditions

θ(0) = 1, θ̇(0) = 0.

Step 1: Write the equation(s) as a system of first-order equations: The

given equation is a second-order ODE. To recast it as a system of two first-

order equations (an nth-order equation reduces to a set of n first-order equa-

tions), let us introduce two new variables.

Let z1 = θ and z2 = θ̇. Then ż1 = θ̇ = z2 and ż2 = θ̈ = −ω2 sin(z1). Now

eqn. (8.2) may be written in vector form as{
ż1

ż2

}
=

{
z2

−ω2 sin(z1)

}
.

We may write this equation in vector form as

ż = f(z),

where ż, z, and f(z) are vectors with two components each:

z =

{
z1

z2

}
,

ż =

{
ż1

ż2

}
=

{
z2

−ω2 sin z1

}
= f(z).

This is a special case of ż = f(t, z) where f does not depend on t. In general, f

may contain time-dependent components as well. For example, we could have

a driven pendulum, given by

θ̈ + ω2 sin θ = A cos Ωt.

In this case, we would write{
ż1

ż2

}
︸ ︷︷ ︸

ż

=

{
z2

−ω2 sin(z1) +A cos(Ωt)

}
︸ ︷︷ ︸

fz

.

Step 2: Write a function to compute the new state derivative: We need

to write a function that, given the scalar time t and vector z as input, returns

the time derivative vector ż as output. In addition, the state derivative vector

ż must be a column vector. Here is a function that serves the purpose.
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function zdot = pend(t,z);

% Call syntax: zdot = pend(t,z);

% Inputs are: t = time

% z = [z(1); z(2)] = [theta; thetadot]

% Output is: zdot = [z(2); -w^2*sin z(1)]

wsq = 1.56; % specify a value of w^2

% unpack z for clarity

z1 = z(1);

z2 = z(2);

% compute derivatives

z1dot = z2;

z2dot = -wsq*sin(z1);

% now pack derivatives in a column vector

zdot = [z1dot;

z2dot];

Note that z(1) and z(2) refer to the first and second elements of vector z.

Do not forget to save the function pend as an M-file to make it accessible to

MATLAB.

Step 3: Use ode23 or ode45 for solution: Now, let us write a script file that

solves the system and plots the results. Remember that the output z contains

two columns: z1, which is actually θ, and z2, which is θ̇. Here is a script file

that executes ode23, extracts the displacement and velocity in vectors x and

y, and plots them against time as well as in the phase plane.

tspan = [0 20]; z0 = [1;0]; % assign values to tspan, z0

[t,z] = ode23(’pend’,tspan,z0); % run ode23

x = z(:,1); y = z(:,2); % x=column 1 of z, y=column 2

plot(t,x,t,y) % plot t vs x and t vs y

xlabel(’t’), ylabel(’x and y’) % add axis labels

figure(2) % open a new figure window

plot(x,y) % plot phase portrait

xlabel(’Displacement’), ylabel(’Velocity’)

title(’Phase Plane Plot’) % put a title

Step 4: Extract and interpret results: The desired variables have already been

extracted and plotted by the script file in Step 3. The plots obtained are shown

in Fig. 8.2 and Fig. 8.3.

8.2.3 ode23 versus ode45

For solving most initial value problems, you use either ode23 or ode45. Which

one should you choose? In general, ode23 is quicker but less accurate than ode45.

However, the actual performance also depends on the problem. As the following

table shows, ode45 is perhaps a better choice. We solved the two simple ODEs

discussed in Sections 8.2.1 and 8.2.2 with these functions and noted the number

of successful steps (good steps), number of failed steps (bad steps), and number

of function evaluations (f-evals). Solutions were obtained with different relative

tolerances. What does this tolerance mean? How do you set it? We discuss this in

the following sections (Sections 8.2.4 and 8.2.5).
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Figure 8.2: Displacement and velocity versus time plot of the pendulum.
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Figure 8.3: Displacement versus velocity plot of the pendulum.
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RelTol Solver Good Steps Bad Steps f-evals

Solve ẋ = x+ t, x(0) = 0, 0 ≤ t ≤ 2

default ode23 17 3 61
default ode45 10 0 61

Solve θ̈ = −ω2 sin θ, θ(0) = 1, θ̇(0) = 0, 0 ≤ t ≤ 20

default ode23 114 13 382
default ode45 33 0 199
10−4 ode23 251 15 799
10−4 ode45 49 1 301
10−5 ode23 528 0 1585
10−5 ode45 80 10 541
10−6 ode23 805 0 2416
10−6 ode45 104 0 625

8.2.4 Specifying tolerance

Many functions in the funfun category provide the user with a choice of specifying a

tolerance as an optional input argument. A tolerance is a small positive number that

governs the error of some appropriate kind in the computations of that function.

For example, the ODE solvers ode23 or ode45 use the tolerance in computing the

step size based on the error estimate of the computed solution at the current step.

So what value of the tolerance should you specify? To make your decision even

harder, there are two of them—relative tolerance and absolute tolerance.

The relative tolerance, in general, controls the number of correct digits in the

solution of a component. Thus, if you want the solution to have k digit accuracy,

you should set the relative tolerance to 10−k. This is because the error estimated

in the solution of a component yi is compared with the value Relative Tolerance

× |yi|. In fact, MATLAB uses a combination of both the relative tolerance and the

absolute tolerance. For example, in ODE solvers, the estimated local error ei in the

solution component yi at any step is required to satisfy the relationship

ei ≤ max(RelTol× |yi|,AbsTol).

The absolute tolerance specifies the threshold level for any component of the

solution below which the computed values of the component have no guarantee of

any accuracy. From the error relationship shown previously, it should be clear that

specifying a very low value of relative tolerance, below the absolute tolerance, may

not lead to more accurate solutions.

The absolute tolerance can also be specified as a vector, in which case it specifies

the threshold values of each solution component separately. The value of a solution

component below the corresponding absolute tolerance is almost meaningless.
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8.2.5 The ODE suite

The ODE suite of MATLAB consists of several other solvers (mostly for stiff ODEs

and differential algebraic equations (DAEs) of index 1) and utility functions. Even

the old faithfuls, ode23 and ode45, have been rewritten for better performance.

The following list shows some of the functions and utilities available in MATLAB.

You should see the on-line help on these functions before using them.

ode45 nonstiff solver based on fourth-/fifth-order Runge–Kutta method,

ode15s stiff solver and DAE solver based on a variable order method,

ode23 nonstiff solver based on second-/third-order Runge–Kutta method,

ode113 nonstiff solver based on variable order,

Adams–Bashforth–Moulton methods,

ode23t stiff solver for moderately stiff equations and DAEs,

based on trapezoidal rule,

ode23s stiff solver based on a low order,

numerical differentiation formula (NDF), and

ode23tb stiff solver based on a low-order method.

Utility functions

odefile a help file to guide you with the syntax of your ODE function,

odeset a function that sets various options for the solvers,

odeget a function that gets various options parameters,

odeplot a function that is specified in options for time series plots, and

odephas2 a function that is specified in options for 2-D phase plots.

Because there are so many choices for solvers, there is likely to be some confusion

about which one to choose. If you do not have stiff equations, your choices are

limited to ode23, ode45, and ode113. A general rule of thumb is that ode45 will

give you satisfactory results for most problems, so try it first. If you suspect the

equations to be stiff, try ode15s first from the list of stiff solvers. If that doesn’t

work, learn about stiffness, understand your equations better, and find out more

about the stiff solvers in the ODE suite before you start trying them out.

One nice feature of the entire ODE suite is that all solvers use the same syntax.

We discussed the simplest form of the syntax in the previous section. Now we will

look at the full syntax of these functions:

[t, y, pstats] = solver(’ode_fun’,tspan,x0,options, p1,p2,...)

time 
vector

time span
solution matrix

initial 
conditions

optional
arguments

optional
output

User-written function with title line:
   xdot = ode_fun(t, x);
This function contains the ODEs
you want to solve.

options created
with  odeset
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There are three new optional arguments here—one in the output, stats, and

two in the input, options and p1, p2, · · ·, pn. Here is a brief description of these

arguments.

pstats: It is a six-element-long vector that lists the performance statistics of

the solvers. The first three elements are (i) number of successful steps, (ii)

number of failed steps, and (iii) number of function evaluations. The next

three elements are related to performance indices of stiff solvers.

options: It is a structure that is created with the function odeset using the

command

options = odeset(’name1’,value1,’name2’,value2,· · ·)

where name refers to the name of the optional argument that you want to

set and value refers to the corresponding value of the argument. The list

of the arguments that you can set with odeset includes relative tolerance

(reltol), absolute tolerance (abstol), choice of output function (outputfcn),

and performance statistics (stats). There are many more optional arguments.

See the on-line help on odeset. The most commonly used arguments, per-

haps, are reltol, abstol, stats, and outputfcn. When stats is ’on’, the

solver performance statistics are displayed at the end. It is an alternative2

to specifying the optional output argument pstats discussed earlier. The ar-

gument outputfcn can be assigned any of the output functions, ’odeplot’,

’odephas2’, ’odephas3’, or ’odeprint’, to generate a time series plot,

phase plot in 2-D or 3-D, or show the computed solution on the screen, as the

solution proceeds.

As an example, suppose we want to set the relative tolerance to 10−6, abso-

lute tolerance to 10−8, see the performance statistics, and have MATLAB plot

the time series of the solution at each time step as the solution is computed.

We set the options structure as follows:

options = odeset( ’reltol’,1e-6,’abstol’,1e-8,. . .

’stats’,’on’, ’outputfcn’,’odeplot’);

p1, p2, . . ., pn: These are optional arguments that are directly passed on to

the user-written ODE function. In previous versions of MATLAB, the only

arguments that the solvers could pass on to the ODE function were (t, x).

Thus, if the user-written function needed other variables to be passed, they

had to be either hardcoded or passed on through global declaration. To find

out how to use these variables in the ODE function and how to write the

list of input variables to incorporate these optional variables, please see the

on-line help on odefile.

2Of course, if you specify the optional output argument, the statistics are saved in that variable,
whereas with ’stats’ ’on’ in the options, you see the statistics but cannot access them later.
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8.2.6 Event location

In solving initial value problems, usually the termination condition is specified in

terms of the independent variable. As shown in the previous two examples, the

solution stops when the independent variable t reaches a prescribed value tfinal

(specified as the second element of tspan). Thus, we obtain the solution for a

certain time span. Sometimes, however, we need to stop the solution at a specified

value of the dependent variable and we do not know when (at what value of t) the

solution will reach there. For example, say we want to solve a projectile problem.

We write the equations of motion (two ODEs for ẍ and ÿ), and we would like

to solve the equations to find when the projectile hits the target. If we do not

know tfinal a priori, what value of tfinal should we specify in tspan? One thing

we know is that the solution should stop when the target (some specified location

xtarget or ytarget) is hit, that is, when x or y reaches a particular value. When the

dependent variables (here x(t) or y(t)) reach some specified value, we call that an

event, and the problem of finding the time of the event is called event location. Event

location problems are solved by following the solution until the solution crosses the

event, then backtracking to the time just before the event, and then taking smaller

and suitably computed time steps to land exactly at the event. There are several

strategies and algorithms for event location. In the literature, the event location

problem is also referred to as integrating across discontinuities.

Fortunately, the ODE solvers in MATLAB have built-in ability to solve event

location problems. Let us take a simple example—a projectile is thrown with initial

speed vo at an angle θ. We want to find out (i) the instant when the projectile

hits the ground, (ii) the range, and (iii) the trajectory of the projectile. The ODEs

governing the motion of the projectile are

ẍ = 0,

ÿ = −g.

The initial conditions are x(0) = y(0) = 0, ẋ(0) = v0 cos θ, and ẏ(0) = v0 sin θ.

The equations of motion are to be integrated until y = 0 (the projectile hits the

ground).

Before we write a function to code our equations, we need to convert them into

a set of first-order equations:

Let x = x1, ẋ = x2, y = x3, and ẏ = x4, then ẋ1 = x2, ẋ2(= ẍ) = 0, ẋ3 = x4, and

ẋ4(= ÿ) = −g. In vector form:
ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

0
x4

−g

. (8.3)

Now, eqn. (8.3) is ready for coding in a function.
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Event specification

In this example, the event takes place at y = 0. But if we somehow instruct the

solver to stop when y = 0, our projectile will never take off because the solver

will stop right at the start, since y(0) = 0. Therefore, we have to make the event

detection more robust by adding some more condition(s). In this example, we can

use the fact that the vertical component of the velocity will be negative when the

projectile hits the ground, i.e., ẏ < 0. Thus, the conditions for the event detection

are

y = 0, ẏ < 0.

Once the event is detected, we have to make another decision—what to do next.

We could stop the solution (as we desire in the present example) or we could simply

note the event and continue with or without changing some variables (for example,

a ball bouncing off a wall would require the detection of collision with the wall,

application of collision laws to determine the reversed initial velocity, and then

continuation of the solution). If the solution has to stop at the event, we will call

the event terminal, or else nonterminal. Our event is terminal. This completes the

specification of the event.

Solution with event detection

We will now show how to solve the projectile problem using MATLAB’s solver

ode45 such that the solver automatically detects the collision of the projectile with

the ground and halts the program. The steps involved are as follows.

Step 1: Tell the solver to watch out for events: We need to tell the solver

that we want it to look for events that we are going to specify. This is done

by setting the ’events’ flag ’on’ in the options with the function odeset:

options = odeset(’events’,’on’);

Of course, when we run the solver (see Step 3), we will use options as an

optional input argument.

Step 2: Write your function to give event information: We need to write

the ODE function with some additional features now. The MATLAB solver

is going to call this function with an extra input variable, flag, that tells the

ODE function what kind of output is desired. When the solver calls the ODE

function with the flag set to events, it looks for three output quantities from

the ODE function:

1. value: a vector of values of those variables for which a zero crossing

defines the event. In our example, the event (collision with the ground)

is defined by y = 0, i.e., a zero crossing of the y-value. Thus, in our case,

value=x(3) (the value of y).
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2. isterminal: a vector of ones and zeros specifying whether occurrence

of an event is terminal (stops the solution) or not. For each element in

the vector value, a 0 or a 1 is required in the vector isterminal. In our

example, we have only one element in value (x(3) or y); therefore, we

need just one element in isterminal. Because we would like to stop the

program at y = 0, the zero crossing of y is terminal. Therefore, we set

isterminal=1.

3. direction: a vector of the same length as value, specifying the direction

of zero crossing for each element in value: a −1 for negative value, a

1 for positive value, and a 0 for I-don’t-care value. In our example,

direction=-1 will imply that the zero crossing of y is a valid event only

when the value of y is decreasing (y crosses zero with ẏ < 0). As you

can see, specification of direction prevents the solver from aborting the

solution at the outset when y = 0 but ẏ 6< 0.

Of course, your function should provide the event information, in terms of

these three vectors as output, but only when asked. Thus, your function

should check the value of the flag and output the three vectors if the flag

is set to events; otherwise it should output the usual derivative vector xdot.

We can implement this conditional output using switch (you can do it using

if-elseif construction too), as shown in the following example function.

function [value,isterminal,dircn] = proj(t,z,flag);

% PROJ: ODE for projectile motion with event detection

g = 9.81; % specify constant g

if nargin<3 | isempty(flag) % if no flag or empty flag

value = [z(2); 0; z(4); -g];

else

switch flag % see Section 4.3.4 for ’switch’

case ’events’

value = z(3); % ’value’ is zero crossing for y

isterminal = 1; % ’isterminal’: y=0 is terminal

dircn = -1; % ’direction’: ydot < 0

otherwise

error(’function not programmed for this event’);

end % end of switch

end % end of if

Step 3: Run the solver with appropriate input and output: Clearly, we

need to include options in the input list. In the output list, we have the

choice of including some extra variables:

te times at which the specified events occur,

ze solutions (values of state variables) at te, and

ie indices of events that occurred at te.
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So, now let us solve the projectile problem. Our ODE function proj is ready.

Here is a script file that specifies the required input variables and executes

ode45 with appropriate output variables. The trajectory is shown in Fig. 8.4,

along with some information about range and time of flight.

% RUNPROJ: a script file to run the projectile example

tspan=[0 2]; % specify time span, [t0 tfinal]

v0=5; theta = pi/4; % theta must be in radians

z=[0; v0*cos(theta); 0; v0*sin(theta)];

% specify initial conditions

options = odeset(’events’, ’on’);

% set the events switch on

[t,z,te,ze,ie] = ode45(’proj’,tspan,z0,options);

% run ode45 with options

x = z(:,1); y = z(:,3); % separate out x and y

plot(x,y), axis(’equal’) % plot trajectory

xlabel(’x’), ylabel(’y’), % label axes

title(’Projectile Trajectory’) % write a title

info = [’Range (x-value) = ’, num2str(ze(1)), ’ m’;

’Time of flight = ’, num2str(te), ’ s’];

% create strings of information

text([1;1],[0;-.1], info) % print Range and Time on plot
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Projectile Trajectory

Range (x-value) = 2.5484 m
Time of flight = 0.7208 s

Figure 8.4: Trajectory of a projectile obtained by integrating equations of motion
with ode45 and using the event detection facility of the solver.
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8.3 Solution of ODEs for Boundary Value Prob-
lems

We now discuss how to solve ordinary differential equations that must satisfy spec-

ified boundary conditions. A simple boundary value problem is written as

y′ = f(x, y), ∀x ∈ [a, b],

y(a) = ya,

and y(b) = yb,

where y = y(x) and y′ ≡ dy
dx . The boundary conditions can be also expressed in

residual form (the form where the right-hand side is necessarily zero) as

y(a)− ya = 0,

y(b)− yb = 0.

Instead of one ODE, we can also have a set of ODEs along with the appropriate

number of boundary conditions and represent them in appropriate arrays:
y′1
y′2
...
y′n

 =


f1(y1, y2, . . . , yn, x)
f2(y1, y2, . . . , yn, x)

...
fn(y1, y2, . . . , yn, x)

 (8.4)

along with the boundary conditions:
y1(a)− y1a = 0
y2(a)− y2a = 0

...
yn(a)− yna = 0

 and


y1(b)− y1b = 0
y2(b)− y2b = 0

...
yn(b)− ynb = 0

 . (8.5)

This is the form that MATLAB’s built-in functions would need to solve our

BVPs. Just as we discussed in the previous section on IVPs, all higher-order ODEs

have to be converted into a set of first-order ODEs for numerical solutions.

The solution strategy for solving boundary value problems (BVPs) has to be

quite different from that for initial value problems (IVPs). As we have already seen,

IVPs require forward marching in time. Starting from the given initial conditions

(value of the desired solution at t = 0), we try to take as accurate a step as we can

when we march forward to construct the solution bit by bit. In the case of BVPs,

however, we have to guess a solution that satisfies the differential equation over the

entire domain and hope that it also meets the boundary conditions. Well, that is

not going to happen so easily. So, we have to learn from the previous guess, see how

far we are from meeting the boundary conditions, take another educated guess, and

iterate until our solutions converges. Sounds tedious? Well it is. But MATLAB

does most of that work for us. It provides two very nice functions bvp4c and bvp5c

for solving BVPs, just like ode23 and ode45 that solve IVPs. Both functions solve
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boundary value problems defined by a set of ODEs of the form y′ = f(x, y) where

y = y(x), along with the boundary conditions y(a) and y(b) (for two-point BVPs3)

over the interval x ∈ [a, b]. Both functions use finite difference algorithms with

specific Lobatto-IIIa formulas for finding a C1-continuous solution over the entire

interval [a, b]. They differ in the order of the formula used and the accuracy of the

computed solution:

bvp4c implements the three-stage Lobatto-IIIa formula that leads to fourth-order

accuracy in the computed solution. The residual error used to compare with

the specified (or default) tolerance is not the true error (i.e., the difference

between the computed and the exact solution) in this case but an indirect

measure of it.

bvp5c implements the four-stage Lobatto-IIIa formula that leads to fifth-order

accuracy in the computed solution. The residual error is directly compared

with the true error in this case and controlled with the specified tolerance.

The syntax of use of bvp4c (identical for bvp5c) is as follows:

 solution = bvp4c(@ode_set,@BCs_set,initial_guess,options)

Solution 
(a structure)

Handle of the 
user-written function 
that contains the set of

ODEs defining the BVP 
 

 Handle of the 
user-written function
specifying the set of
boundary conditions

Initial guess
for the solution

Optional 
arguments

where the input and output arguments are as described below:

ode set: This is a user-written function that contains the set of first order ODEs

of interest in the form of eqn. (8.4). The function should have a form:

yprime = ode_set(x,y,parameters);

where the output yprime must be a column vector containing the values of

the derivatives y′1, y′2, · · ·, y′n, computed from a single value of x and a column

vector of y. The function must be coded to handle this type of input–output.

The parameters contain unknown parameters that also need to be solved for

in some BVPs. We will not worry about these parameters here.

BCs set: This is another user-written function that contains all specified boundary

conditions (BCs) in the residual form represented by eqn.(8.5). For two- point

BVPs, this function should have the following form:

3Both functions are capable of solving multi-point BVPs as well. See on-line documentation
for more details.
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residual = BCs_set(ya,yb);

where ya and yb are vectors containing the values of all y-components at the

boundary points x = a and x = b generated at each iteration of the solution

(e.g., ya = [y1(a), y2(a), y3(a), · · · , yn(a)]T ). The function bvp4c calls upon

BCs set with these inputs at each iteration and expects BCs set to return

the appropriate residual as a column vector by taking the appropriate values

from ya and yb corresponding to the specified boundary conditions.

initial guess: is a structure created with the BVP helper function bvpinit for

initializing the solution. Initialization refers to creating an initial set of grid

points or mesh over the domain [a, b], and providing a set of values for each

component yi of the differential equation at all initial grid points as the initial

guess of the solution. Typically, guessing a constant value for each yi at all

grid points is good enough. However, if you know better, you can specify

a function that returns yij for a given xj . This structure, initial guess,

generally contains two fields:

initial guess.x: contains ordered nodes of the initial mesh from the first

node at x = a to the last one at x = b. Typically, it is sufficient to have

equispaced n grid points, easily generated with linespace. See Fig. 8.5.

initial guess.y: contains the initial guesses for each yi at all initial grid

points xj . Thus, if we initially specify m grid points,

[x1, x2, · · · , xm],

where x1 = a, and xm = b, and we have n first-order differential equa-

tions in our problem, then initial guess.y is an (m× n) matrix with

each column containing the values of the corresponding y-component.

That is,

initial guess.y =


y1(x1) y2(x1) · · · yn(x1)
y1(x2) y2(x2) · · · yn(x2)

...
...

...
...

y1(xm) y2(xm) · · · yn(xm)

.
options: provides input for optional bells and whistles that include setting relative

and absolute tolerances, flagging for vectorized x, providing additional help

in terms of Jacobians, and specifying singular terms, etc. We will not get into

these options here; consult the on-line documentation if you are interested.

solution: is the output structure that contains the following fields:

solution.x: The final grid points or mesh that the solver used for the con-

verged solution.

solution.y: The converged solution for each component of y at the final grid

points.

solution.yp: The converged values of each component of y′ at the final grid

points.
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x1

x=a x=b
x2 x3 xm

x1

a b
x2 x3 xn

x1 x2 x3 xn

y1 (initial)

y2 (initial)
Initial mesh from a to b

Figure 8.5: The initial grid points over the domain of interest and the initial guess
for the solution of each y-component at all grid points need to be specified for the
initialization of the solution process. The grid points can be equidistant points
between x = a and x = b and the initial guess for each y-component can be a
constant value.

In addition, there are three more fields: solution.parameters for the com-

puted values of unknown parameters, if any; solution.stats for computa-

tional statistics if asked for by setting the appropriate option in bvpset; and

solution.method for telling you which solver has been used.

Now, let us solve a BVP and see through an example how to write the required

functions, run bvp4c, and see the results.

8.3.1 Example 1: A simple BVP

Let us consider the following simple second-order BVP:

y′′ + y = 1

with the boundary conditions:

y(0) = 1 and y
(π

2

)
= 0.

Now, let us solve this problem step by step using bvp4c.

Step 1: Write the equation as a system of first-order equations: This is eas-

ily done following the same logic as that discussed in Section 8.2, page 239,

for IVPs. Let y1 = y and y2 = y′. Then the given BVP can be written as

y′1 = y2

y′2 = 1− y1
or

{
y′1
y′2

}
=

{
y2

1− y1

}
.

Step 2: Write a function to compute the derivative: The computed deriva-

tive must return a vector containing all y components for a given scalar x and

vector y. Let us write a function (.m file) to compute the derivative vector.
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function y_prime = simpbvp(x,y);

% unbundle y for clarity

y1 = y(1);

y2 = y(2);

% compute derivative of each y component

y1prime = y2;

y2prime = 1-y1;

% now pack all derivatives in a column

y_prime = [y1prime;

y2prime];

We can, of course, write this function in two lines:

function y_prime = simpbvp(x,y);

y_prime = [y(2); 1-y(1)];

However, we recommend the first one above, especially for beginners, because

it it is much clearer.

Step 3: Write a function for boundary conditions: This function has to re-

turn the residual between the current value of y1(= y) and the specified value

at the two boundary points x = 0 and x = π/2. bvp4c will call this function

with two input arguments:

ya =

{
y1(a)
y2(a)

}
and yb =

{
y1(b)
y2(b)

}
.

The output of the functions has to be a column vector of residuals for the

BCs, i.e.,

residual =

{
y1(a)− 1
y1(b)

}
.

We can easily code this requirement in a function:

function residual = bcs(ya,yb);

y1_a = ya(1); y1_b = yb(1); %pick appropriate components

residual = [y1_a - 1; %compute bc residuals

y1_b ];

Step 4: Initialize the solution with your first guess: Use the initialization func-

tion bvpinit to create the initial grid points and the corresponding initial

values of each y.

% create a grid of 50 equidistant points in [0 pi/2]

xgrid = linspace(0,pi/2,20);

% initially, set y1=1 and y2=2 at all grid points

all_y1 = 1; all_y2 = 2;

% initialize solution

first_guess= bvpinit(xgrid,[all_y1 all_y2]);

Step 5: Solve the BVP with bvp4c: Now, we are ready to invoke bvp4c for

solving our problem.

sol = bvp4c(@simpbvp,@bcs,first_guess);
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Step 6: Unpack the solution and plot: You can easily pick out the component

of y you are interested in from the structure sol by extracting sol.y and pick-

ing the appropriate row. Alternatively, you can use the ODE helper function

deval to not just extract sol.y from sol but also evaluate (by interpolation)

all components of y at new desired points of x (perhaps a finer grid for a

smoother plot).

xnew = linspace(0,pi/2,100); %100 point grid between x=0 and x=pi/2

y = deval(sol, xnew); % extract sol.y and evaluate at xnew

plot(xnew,y(1,:)); % plot y1 vs x; y1 is the soln y=y(x)

xlabel(’x’), ylabel(’y(x)’)
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Figure 8.6: Numerical solution y(x) obtained from bvp4c.

8.3.2 Example 2: Deflection of a fixed–fixed beam under
nonuniform loading

The vertical elastic deflection y(x) of a horizontal beam under a distributed loading

q(x) is given by

y′′′′ =
q(x)

E(x)I(x)
(8.6)

where E is the Young’s modulus and I is the area moment of inertia. For a beam

of length ` with both ends firmly clamped, the boundary conditions are

y(0) = y(`) = 0 and y′(0) = y′(`) = 0.

Thus, finding the deflection y(x) (also called the elastic curve) of the beam under

a given loading is a BVP with four boundary conditions. The governing equation

is a fourth-order ODE. Let us find the deflection curve of a beam for which E = 1,

I = 1, q(x) = 1, and ` = 1. Thus, the BVP we have to solve is

y′′′′ = 1,
y(0) = y(1) = 0,
y′(0) = y′(1) = 0.
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The analytical solution of this equation is y(x) = qx2

24EI (` − x)2 = x2

24 (1 − x)2. We

will compare the numerical solution with the analytical solution.

Here, we need to convert the fourth-order governing differential equation into

a set of four first-order equations which is easily accomplished by letting y1 = y,

y2 = y′, y3 = y′′ and y4 = y′′′. Then, we can write our system of first-order

equations as

y′1 = y2, y′2 = y3, y′3 = y4, and y′4 =
q

EI
= 1.

The following function that includes all required functions solves the BVP and plots
the solution.

function bvp_example2;

% Function file to solve the beam deflection BVP:

% y’’’’ = q(x)/(E(x)I(x)),

% BCs: y(0)=y(1)=0 and y’(0)=y’(1)=0.

% Initialization

% create a grid of 50 equidistant points in [0 1]

xgrid = linspace(0,1,51);

% initially, set y1=1 and y2=2 at all grid points

all_y1=1; all_y2 = 0; all_y3=1; all_y4=1;

% initialize solution

first_guess= bvpinit(xgrid,[all_y1 all_y2 all_y3 all_y4]);

% Solution

sol = bvp4c(@beambvp,@clamped_bcs,first_guess);

% Result extraction and display

xnew=linspace(0,1,201); %100 point grid from x=0 and x=pi/2

y=deval(sol, xnew); %extract sol.y and evaluate at xnew

plot(xnew,y(1,:)); %plot y1 vs x; y1 is the soln y=y(x)

xlabel(’x’), ylabel(’y(x)’)

%All needed functions are here

function y_prime = beambvp(x,y);

% unbundle y for clarity

y1=y(1); y2=y(2); y3=y(3); y4=y(4);

% specify parameters E(x), I(x), and q(x)

E=1; I=1; qc=1; % uniformly distributed load

% compute derivative of each y component

y1p=y2; y2p=y3; y3p=y4; y4p=qc./(E.*I);

% now pack all derivatives in a column

y_prime=[y1p; y2p; y3p; y4p];

end

function residual = clamped_bcs(ya,yb);

y1_a = ya(1); y1_b = yb(1); %pick appropriate components

y2_a = ya(2); y2_b = yb(2);

residual = [y1_a; y1_b; y2_a; y2_b]; %compute bc residuals

end

end
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Executing this function results in a graph of the elastic curve, y(x). Note that

you can change the function easily to incorporate complex loads q(x) and spatial

variation in E and I (e.g., I = 2 + sin(10 ∗ πx)). The results obtained from the

function above, with a bit of figure manipulation (using subplot and flipping the

y-axis) is shown in Fig. 8.7, along with the results from the analytical solution.

q(x)=1
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Figure 8.7: Numerical solution y(x) (elastic curve) obtained from bvp example2

plotted along with the analytical solution.

Caution: Solving boundary value problems is very different from solving

initial value problems. As you have seen, bvp4c requires an initial guess for each

component of y. These initial guesses are tricky and some of them may lead to

singular Jacobian which then paralyzes bvp4c. There are no easy fixes; and for

most such things in life, only experience teaches you how to deal with it.

8.4 Advanced Topics

The topics covered in the preceding sections of this chapter are far from exhaustive

in what you can do readily with MATLAB. These topics have been selected carefully

to introduce you to various applications that you are likely to use frequently in your

work. Once you gain a little bit of experience and some confidence, you can explore

most of the advanced features of the functions introduced as well as several functions

for more complex applications on your own, with the help of on-line documentation.

MATLAB provides functions for solving other kinds of differential equations as

well that we have not discussed at all. These equations include delay differential

equations (DDEs), differential-algebraic equations (DAEs), and partial differential

equations (PDEs). In particular, we mention the following functions for your ex-

ploration.

dde23 solves delay differential equations with constant delays; that is, differential

equations of the form ẋ = f
(
t, x(t), x(t − τ1), x(t − τ2), ..., x(t − τk)

)
, where

τj ’s represent constant delays.

ode15i solves implicit ODEs and DAEs of index 1 with the helper function

odeic for evaluating consistent initial conditions.

pdepe solves simple parabolic and elliptic partial differential equations (PDEs)

of a single dependent variable. This is a rather restricted utility function.

However, for those who need to solve PDEs frequently, there is the Partial

Differential Equation Toolbox.
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EXERCISES

1. Length of a curve through quadrature: The length of a parametric curve
defined by x(t) and y(t) over a ≤ t ≤ b is given by the integral∫ b

a

√
(x′)2 + (y′)2 dt,

where x′ = dx/dt and y′ = dy/dt. Find the length of a hypocycloid defined by

x(θ) = a cos3 θ and y(θ) = a sin3 θ, 0 ≤ θ ≤ π/2.

Take a = 1.

2. Bernoulli equation and animation population model: A first order differential
equation of the form

y′ + p(x)y = q(x)yn

is known as a Bernoulli Differential Equation. Such equations reduce to integrable
differential equations with a simple substitution u = y1−n. For example, consider
an animal population growth model4 given by

ṗ− p = −
(

1

7 + sin(6t)

)
p2,

where p(t) is the dynamic animal population and ṗ = dp/dt. Substituting y = p−1

transforms this equation to the integrable form ẏ + y = (7 + sin 6t)−1. We can find
y(t) using the integrating factor et, and find p(t) by substituting y = 1/p. All of
these substitutions lead to

p(t) = et
(∫ t

0

ex

7 + sin(6x)
dx+

1

p0

)−1

,

where p0 = p(0) is the initial population.

• Write a function to find p(t) given p0 and some t.

• Take p0 = 3 and find p(t) for several values of t over the interval t ∈ [0, 10].
Plot p(t) versus t.

• Repeat the previous step for p0 = 5, 7, 9, and 11. Plot all graphs together.
What do the graphs indicate about the animal population?

3. A second-order linear ODE, the phenomenon of beats and resonance:
Consider the following simple linear ODE of second order.

ẍ+ x = F0 cosωt.

• Convert the given equation to a set of first-order ODEs and program the set
of equations in a function to be used for numerical solution with ode45.

• Set F0 = 0 and solve the system of equations with the initial conditions x(0) =
0, ẋ(0) = 1. By plotting the solution, make sure that you get a periodic
solution. Can you find the period of this solution?

4See Lomen and Lovelock, Differential Equations: Graphics, Models, Data, John Wiley & Sons,
1999, for more details. This problem is adapted from this text.
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• Let F0 = 1 and ω = 0.9. Starting with zero initial conditions (x(0) = ẋ(0) = 0),
find the solutions x and ẋ for 0 ≤ t ≤ 70. Plot x against t. How is the
amplitude of the rapidly oscillating solution modulated? You should see the
beats phenomenon.

• Let F0 = 1 and ω = 1. Again starting with zero initial conditions, find the
solution for 0 ≤ t ≤ 40. How does the amplitude of the solution, x, change
with time in this case? This is the phenomenon of resonance.

• Experiment with the solution of the system by adding a damping term, say
ζẋ, on the left-hand side of the equation.

4. Nonlinear ODEs, phase plots, and limit cycles: Consider the following set
of first-order, coupled, nonlinear ODEs.

ẋ = x+ y − x(x2 + y2), (8.7)

ẏ = −x+ y − y(x2 + y2). (8.8)

• Solve this set of equations with the initial conditions x(0) = 2 and y(0) = 2
over the time interval 0 ≤ t ≤ 20. Plot x vs t and y vs t in two different figures.
Use hold on to keep the plots and graph subsequent solutions as overlay plots.
Save the solutions x and y in, say x1 and y1, for later use.

• Solve the given set of equations for the following set of initial conditions and
plot the solutions as above (along with the old solutions): (i) (x0, y0) = (1, 0),
(ii) (x0, y0) = (0.1, 0), and (iii) (x0, y0) = (0, 1). Save the solutions for each
case for later use. Do the plots suggest a particular long-term behavior of the
system? You should see both x(t) and y(t) settling down to the same periodic
motion for all initial conditions.

• The ultimate periodic solution that all solutions seem to get attracted to is
called a limit cycle. It is much easier to visualize this cycle in the phase plane,
that is, the plane of x and y. Plot x vs y for all solutions (you have saved
the data from each run) in a single figure. This plot is called phase plot. You
should clearly see the limit cycle in this plot. (Use axis(’square’) to make
the periodic orbit a circular orbit.)

• Try solutions with some other initial conditions.
• Challenge: Can you write a script file that will take the initial conditions

from your mouse click in the phase plane, solve the equations, and draw the
phase plane orbit as many times as you wish? [Hint: You can use ginput for
taking initial conditions from the mouse click.]

Note: The same system of ODEs given above reduces to very simple and separable
equations in polar coordinates: ṙ = r(1 − r2), θ̇ = −1. Now, you can even solve
the equations analytically and get an expression for the limit cycle as t→∞.

5. Deflection profile of elastic beams: An elastic beam is called a cantilever if
one of its ends is clamped and the other one is free. The beam is called simply
supported if one end is pinned and the other is on a roller. The elastic deflection of
these beams is governed by the same equation as given in eqn. (8.6) but different
boundary conditions.

• Simply supported beam: Use the example function bvp example2 with the
boundary conditions y(0) = y(`) = 0, y′′(0) = y′′(`) = 0 to model the beam as
a simply supported beam and find the elastic curve (i.e., plot y(x)). Compare
your results with the analytical solution y(x) = q

24EI
x(x3 − 2`x2 + `3).

• Cantilever beam: Again use the same function with the boundary conditions
y(0) = y′(0) = 0 (fixed end), and y′′(`) = y′′′(`) = 0 (free end) to model
a cantilever beam. Find the elastic curve and compare with the analytical
solution y(x) = q

24EI
x2(x2 − 4`x+ 6`2).





9.
Computer
Algebra and
the Symbolic
Math Toolbox

Computer algebra refers to mostly non-numerical mathematical computation on

computers where symbols are used rather than numbers. In mathematical model-

ing and analysis, we mostly work with symbolic variables, e.g., x, y, α, β; write

equations using these variables; and try to obtain our final answers in terms of these

variables. Computer algebra is meant for such calculations. It uses very different

methods internally for such computations than what numerical computation tech-

niques use. There are dedicated packages, such as Mathematica, Maple, Macsyma

(almost extinct now), and MuPAD, that do computer algebra. Because MATLAB

is a package for numerical computation, it cannot do computer algebra without a

separate computational engine to drive it. Symbolic Math Toolbox does precisely

that—it provides a gateway to a computer algebra package. Until 2007, the engine

inside Symbolic Math Toolbox was Maple; now it is MuPAD.

9.1 The Symbolic Math Toolbox

The Symbolic Math Toolbox allows MATLAB to respond to MuPAD commands.

MATLAB is a program that does mostly arithmetic and MuPAD is another program

that does mostly algebra and calculus. MATLAB mostly gives output that is a

number or an array of numbers. MuPAD is designed to give output in symbolic

form. MATLAB can tell you that
√

2 is about 1.41415 and MuPAD can tell you

that the solutions to x2 = c are x = ±
√
c and leave it at that with the letter c.

MATLAB comes from the numeric calculation tradition of Fortran, Basic, and C.

MuPAD comes from the artificial intelligence tradition of (first and some say best)
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Macsyma, later imitated by Mathematica and others. In the recent past, computer

algebra packages have added the ability to give numeric solutions and make nice

plots. Even though these programs run slower, are harder to learn, and are harder

to use than MATLAB for these purposes, Mathworks has felt the competition and

responded by providing this toolbox.

To master the Symbolic Math Toolbox, you have to master MuPAD, which is at

least as much work as learning MATLAB. You also have to learn how to run MuPAD

from inside MATLAB and keep your head straight at the same time. Basically, you

type a command that makes sense to either plain MATLAB or MuPAD, and if

plain MATLAB can’t make sense of what you are requesting, it checks to see if you

have typed a legitimate MuPAD command (i.e., MATLAB’s version of the MuPAD

command).

9.1.1 Should you buy it?

Although some people swear by them, symbolic calculations seem to be less useful

than numeric computation to many people for two reasons. First, many problems

are too hard to do symbolically. An infinitely fast computer doing symbolic com-

putation will never tell you a formula for the integral of sin(log(x)2), but MATLAB

will tell you the area under the curve as accurately as you would like (see Sec-

tion 8.1, page 232). Second, the symbolic formulas one obtains are often unwieldy.

How does, say, a 50-term symbolic formula give one more insight than a numeric

calculation?

With the Symbolic Math Toolbox, MATLAB can do essentially all that Math-

ematica, Maple, or MuPAD can do. Because the Symbolic Math Toolbox comes

with the student edition of MATLAB, you might as well use MuPAD there for free.

If you don’t have the Symbolic Math Toolbox and you don’t know of any symbolic

calculations that you need to do, wait. Most engineers can do fine without it.

If you want to do a lot of back and forth between symbolic and numeric com-

putation, then MATLAB’s Symbolic Math Toolbox is just the thing for you.

9.1.2 Two useful tools in the Symbolic Math Toolbox

Before getting more involved, you should note two cute and useful tools that come

with the Symbolic Math Toolbox.

1. A quick way to make plots: ezplot. Here is the simplest way to make

simple plots. This function (along with its cousins) is also available in basic

MATLAB (see Section 3.8 on 92 for examples).

• The command ezplot sin(t), or more elaborately, ezplot(’sin(t)’),

makes a plot of the sin function on the default interval (−2π, 2π).

• The command ezplot(’t^2/exp(t)’, [-1 5]) plots the function t2/et

over the interval (−1, 5).
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If you find that you want more control over your plots than ezplot gives you,

learn more of MATLAB’s plotting features in Lesson 3 of Chapter 2 and in

Chapter 5.

2. A fun tool: funtool. Type funtool and you will be operating a two-screen

plotting calculator that does symbolic calculations. Use this when you need

to do some quick checking on a function, its derivative, integral, inverse, etc.

The help key explains what the other keys do. Some correspond to basic

MuPAD commands that you can use at the MATLAB command line as well.

9.2 Numeric Versus Symbolic Computation

What is the difference between numeric (plain MATLAB) and symbolic (the Sym-

bolic Math Toolbox) computation? Let us say you wanted to know the derivative

of a function, t2 sin(3t1/4).

The definition of derivative gives a crude way to numerically calculate the deriva-

tive of a function as f ′ ≈ {f(x+h)−f(x)}/h if h is small. The MATLAB commands

that follow calculate this approximation of the derivative at a set of points spaced

∆t = h apart.

h =.1; % delta t for the difference

t = -pi : h : pi; % the region of interest for t

f = t.^2.*sin(3*t.^(1/4)); % the function at all the t values

fprime = diff(f)/h; % numerical approx of derivative

% Note: diff(f) has 1 less element than f

plot(t(1:end-1), fprime) % plot of the derivative

The derivative of the function is represented by the two lists of numbers t and

fprime. The derivative at t(7) is fprime(7).

Compare this with the Symbolic Math Toolbox calculation of the derivative of

the same function. Here is the command and response.

>> symb_deriv = diff(’t^2 * sin(3*t^(1/4))’)
 
symb_deriv =
 
2*t*sin(3*t^(1/4))+3/4*t^(5/4)*cos(3*t^(1/4))

The Symbolic Math Toolbox gives you a formula for the derivative. If you are

patient you can verify by hand that indeed

d

dt

(
t2 sin(3 t1/4)

)
= 2 t sin(3

4
√
t) + (3/4) t5/4 cos(3

4
√
t).

A plot of the previous function gives about the same curve as the previous nu-

meric calculation. If you type int(symb_deriv), you will get back t^2*sin(3*t^(1/4))
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as expected1 by the fundamental theorem of calculus. MuPAD is pretty good at ba-

sic calculus.

Notice that diff is two different commands. One in MATLAB (dealing with

differences between consecutive items in a list) and one in MuPAD (symbolically

calculating the derivative). Whether MATLAB or MuPAD responds when you use

diff depends on whether you have typed something in the correct syntax for one

or the other program.

9.2.1 Variable precision arithmetic

All computer algebra packages, including MuPAD, can do variable precision arith-

metic: that is, calculate numbers to, theoretically, any arithmetic precision. This is

in contrast to the numbers calculated by MATLAB that are limited to double pre-

cision. The increase in precision, however, comes at a cost of significant increase in

computational time. The command to increase the precision is remarkably simple.

All you have to do is issue the command

vpa(symbolic expression, no of digits)
For on-line help

type:

help vpa to evaluate the symbolic expression up to the desired precision. Thus,

vpa(sin(pi/4)) evaluates to 0.70710678118654752440084436210485

(default precision of 32 digits), and

vpa(sin(pi/4), 40) evaluates to 0.7071067811865475244008443621048490392848

(desired precision of 40 digits),

whereas the plain MATLAB evaluates sin(pi/4) to be 0.707106781186547 using

its default double-precision numerical accuracy.

Thus, you have at least two different options in numerical evaluation of quantities

of interest: (1) as a double-precision floating-point number (MATLAB default)

using double, or (2) as a variable precision number using vpa. You need to be

careful when you use functions such as sqrt on numbers, which by default result

in a double-precision floating-point number. You need to pass such input to vpa

as a symbolic string for correct evaluation: vpa(’sqrt(5)/pi’). [A teaser: Try

evaluating double(’sqrt(5)/pi’). What does the answer mean? Hint: See on-

line help on double.]

9.3 Getting Help with the Symbolic Math Toolbox

There are many ways of getting on-line help on MuPAD. These few pages are just

the tip of an iceberg. To go further without going to the library or bookstore, you

can get help from MATLAB’s usual labyrinth of help options.

• If you know the name of the command you want help with, for instance,

solve, you can see helpful explanations in any of three ways:

1Well, not quite. You will have to use simplify after the integration to get back the original
expression. Alternatively, you could use simplify(int(symb deriv)).
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1. Type help solve at the command line. Luckily, solve is a MuPAD

command and is not also a plain MATLAB command. Beware, some

commands have meaning to both plain MATLAB and the Symbolic Math

Toolbox, such as the command diff used earlier. If you type help diff,

you will see a description of the plain old MATLAB command diff with

this helpful clue at the end:

Overloaded methods

help sym/diff.m

help char/diff.m

Overloaded means the command diff has meaning outside of plain

MATLAB. And help sym/diff.m means that if you type help sym/diff

you will get help with the Symbolic Math Toolbox (i.e., MuPAD) com-

mand, also called diff.

2. Type help sym/solve at the command line to get the same help file as

help solve. Type help sym/diff to get help on the symbolic command

diff.

3. Type helpdesk at the MATLAB prompt. Then click on Symbolic Math
Toolbox in the Help Navigator pane of the Help window. Select the help

resource that interests you (Getting Started is a good first choice).

• To see an organized list of MuPAD commands with a very short description

you can do either of two things:

1. Type help symbolic on the command line. One line in this list is, for

example,

“solve - Symbolic solution of algebraic equations.”

2. Click on the wi? button at the top of the command window. The Help
window opens up. Select Symbolic Math Toolbox in the Help Navigator
pane and then click on By Category under Functions in the main Help
window. You will be presented with the same list of functions but in the

help window.

• Live demonstrations of a few groups of commands are available. These demos

take about a minute if you gloss your eyes and repeatedly hit the space bar.

They take 10–30 minutes if you try to follow them carefully. The demos are

symintro (introduction), symcalcdemo (calculus), symlindemo (linear alge-

bra), symvpademo (variable precision arithmetic), symrotdemo (rotations in

the plane), and symeqndemo (solution of equations). There are two ways to

get to these demos:

1. Type, say, symcalcdemo on the command line and then do as told.

2. Type demos at the command line. Then click on Symbolic Math, then

click on, say, Introduction, and then click on the topic of your choice.
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• The 450+-page-long Symbolic Math Toolbox User’s Guide is on your computer

if someone installed it. At the command line, type helpdesk. In the web

browser that pops up, select Symbolic Math Toolbox, click on the User's
Guide under the Documentation Set and navigate yourself through various

options. You can also download the PDF file of the User’s Guide by selecting

it under the Printable (PDF) Documentation On the Web category.

9.4 Using the Symbolic Math Toolbox

Let’s see some other things the Symbolic Math Toolbox can do, besides diff, int,

ezplot, and funtool.

9.4.1 Basic manipulations

Expand a polynomial, make it look nice, solve it, and check the solution. Try typing

the following lines (one at a time or in an M-file) and keep track of MATLAB’s

response.

syms x a % tell matlab that x and a are symbols

f = (x-1) * (x-a) * (x + pi) * (x+2) *(x+3) % define f

g = expand(f) % rewrite f, multiplying everything out

h = collect(g) % rewrite again by collecting terms

soln = solve(h,x) % find all the solutions,

check = subs(f,x,soln(5)) % check, say, the fifth solution

Comments:
• The syms declaration can sometimes be skipped. MATLAB can sometimes

figure out by context that you want a letter to be a symbol. Two ways to do

this are with the sym command and with single quotes (’). But it is safest to

be explicit and use syms.

• Because x is a symbol, f is automatically treated as a symbolic expression.

• solve is a powerful command that tries all kinds of things to find a solu-

tion. Here, solve manages to find all five roots of a fifth-order polynomial

(something that cannot always be done, by the way).

• subs is an often-used command if you do math on-line. Here every occurrence

of x in the expression f is replaced with the fifth supposed solution. The result

of this line of calculation is, predictably, 0.

9.4.2 Talking to itself

Get plain MATLAB to understand the output of the Symbolic Math Toolbox. One

confusion is that the output of symbolic commands are symbolic expressions. These

often look exactly like regular MATLAB expressions but MATLAB doesn’t see them

that way. There are a few tricks to getting symbolic expressions into a form that

you can easily use with plain MATLAB. The key commands are double (turns a
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symbolic array of numbers into plain old numbers), eval (takes text that looks

like a MATLAB command and executes the command), and vectorize (rewrites

a formula so that it can be applied to a whole array of numbers). Try the following

commands.

syms x t y a % Set x,t,y, and a to be symbols

f = x + sin(x) % define f(x)

q = 3*t^2 -7^t % build up a horrible formula

g = subs(f,x,q ) % Substitute q(t) in for x

h = subs(g,t, ’exp(y/a)’) % Substitute exp(y/a) in for t

pretty(h) % Print it in a readable form

result = subs(h,{y,a},{7,9})

% Evaluate it with y=7 and a=9

a_number_please = double(result)

% Get a number you can work with!

y=0:.1:1; a = pi; % Try an array of values -

% for y and a

y=sym(y); a=sym(a); % treat the values of -

% y and a as symbols

hvec = vectorize(h) % Write a formula that works -

% with arrays

result = eval(hvec)’ % Evaluate that vectorized -

% formula (mess!)

result_numeric = double(result) % MuPAD’s exact --> numbers

plot (double(y), result_numeric) % Graph the horrible formula

Comments:

• Using substitution, it is easy to build up big messy formulas such as the

formula stored in h.

• The command pretty sometimes can help you see through a messy formula.

Try also simplify to reduce formulas using common trig identities, collect

common terms, and so on.

• We have used a fancier syntax for subs here by substituting two things at

once.

• MuPAD writes formulas in a reasonable way for functions of one variable.

MATLAB is set up for matrices. To get MATLAB to plug in a formula for

an array of numbers (and not perform matrix operations), you have to use

array operators (such as y.^2 to square all the elements of y). The vectorize
For on-line help

type:

help vectorizecommand takes a formula that is good for scalars and puts dots in the right

places.

• When to use (or not) the double or eval commands is perfectly confusing.

Trial and error will be an inevitable part of your work.
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9.4.3 Generating MATLAB code for an anonymous function

Sometimes it is convenient to have a new “function” to work with, but you don’t

want to write a whole M-file for the purpose. You would like to be able to type

myfun(7) and have a big formula evaluated. In particular, you might like this

formula to be one you cooked up with the Symbolic Math Toolbox. So, you need

to create an anonymous function (see Section 3.5.1 on page 83) from the symbolic

expression.

Say you want to know how one of the roots of a cubic polynomial depends on

one of the coefficients. Here is one approach.

syms x a

f = x^3 + a*x^2 + 3*x + 5; % A cubic with parameter a.

roots = solve(f==0,x,’MaxDegree’,3); % Find the three roots (a mess!).

root1 = roots(1); % Pick out the first root (a mess!)
For on-line help

type:

help solve r1_a1 = subs(root1,a,1); % Substitute a = 1 in root1.

x_a1 = eval(r1_a1); % Find the numerical value of r1_a7.

res = subs(f,{x,a},{x_a1,1});% Check the root at a=7.

eval(res) % convert res to a float

The expressions that roots contains are horrendous. Although we could sub-

stitute a value of a =1, find the first root, and substitute back in f to see if the

equation f = 0 is satisfied, it would be nice if we could get the three roots as anony-

mous functions of a so that we could plot the three roots and see their variation

with a. Converting roots into an anonymous function directly is hard as (roots is

a symbolic array). However, we can create an anonymous function using a powerful

utility function matlabFunction. Try the following commands in continuation with

the previous commands.

For on-line help

type:

help

matlabFunction
my_anony_fun=matlabFunction(root1); % make an anonymous function of root1

ra1 = my_anony_fun(1);

res2 = subs(f,{x,a},{ra1,1});

eval(res2) % should be same as eval(res)

my_anony_fun = matlabFunction(roots);

my_anony_fun(1);

res3 = subs(f,{x,a},{ans(2),1}); % check the second root

eval(res3)

Comments:
• root1 is the symbolic expression for the first root of the cubic polynomial in

terms of the parameter a.

• An anonymous function wants a character (string) expression, not a symbolic

expression (even though they look the same when typed out), so we cannot

create an anonymous function directly from root1 (i.e., r1 =(a) root1 will

not work). Therefore, we use matlabFunction.

• If you want to plug in a list of values for a, all at once, you can do so because

matlabFunction writes a vectorized function:

myfun = matlabFunction(root1)

myfun([-1 0 1]’) % evaluate myfun for a = [-1 0 1].



9.5 Using MuPAD Notebook 271

9.4.4 Generating M-files from symbolic expressions

When an expression obtained from some symbolic calculation is very long or is of

repeated use to you across multiple MATLAB sessions, you will be better served

by converting that expression into a MATLAB function, an M-file, rather than an

inline or anonymous function. Of course, this conversion is useful only if you are

interested in numerically evaluating that expression. Making the Symbolic Math

Toolbox generate an M-file for you for a given symbolic expression is fairly easy—use

the matlabFunction command with additional input specifying a file name:

f = matlabFunction(expression, ’file’, ’file name’ )

Here, f becomes the handle of the generated function. The input list depends

on the expression or explicit specification with additional input parameters to the

function matlabFunction (see on-line help). The default output variable name is

RESULT. Once the file is created, you can edit it like any other M-file.

Here is one example of using matlabFunction to generate M-files.

syms x a

A = [x a; a*x x^2] % A is a 2 by 2 matrix

[V, D] = eig(A); % compute eigen pairs of A.

lambda = diag(D); % eigenvalues are on the diagonal of D

h_eval = matlabFunction(lambda,’file’,’A_eigenvalues’)

% lambda is coded in A_eigenvalues.m.

help A_eigenvalues % try online help on this function.

A_eigenvalues(1,2) % find eigenvalues for x=1, a=2.

h_evec = matlabFunction(V,’file’,’A_eigenvectors’)

% V is coded in A_eigenvectors.m.

v = A_eigenvectors(1,2) % find eigenvectors for x=1, a=2.

9.5 Using MuPAD Notebook

MuPAD is a powerful package for computer algebra. Apart from hundreds of func-

tions for doing algebra and calculus, it has a very impressive graphics capability.

Only a small subset of that capability is accessible through the Symbolic Math

Toolbox interface. However, MATLAB lets you access the full might of MuPAD,

bypassing the Symbolic Math Toolbox, with a simple command—mupad. You
For on-line help

type:

help mupadtype mupad on the command prompt and a MuPAD Notebook opens. Now you are

in the MuPAD fairy land. Naturally, the language changes, the syntax changes,

the look and feel of everything changes. You can forget MATLAB here. To enjoy

the new environs, you must give yourself enough time to learn the new tricks, new

mannerisms, and new eccentricities. The exploration is rather deep.

The MuPAD Notebook provides access to the full functionality of MuPAD and

also serves as a complete record of your work that includes:

Your input commands that appear in red (see Fig. 9.1 and compare with Fig. 9.2).
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MuPAD output appears in blue and follows the input command. Graphical out-

put, including animations, gets embedded in the output too.

Text comments can be added before each command line and appear in black.

Thus, the notebook is a convenient way of not just doing computation in Mu-

PAD but also preparing reports on your work simultaneously. You can save these

notebooks and reopen them later to continue working from where you had left last

time.

Note the following distinct features of the notebook layout (see Fig. 9.1):

• Work area: This is the main part of the Notebook window where you type

commands and see the output.

• Command bar: Located on the right of the work area, this bar contains a

list of mathematical icons for most frequently performed calculations. Click-

ing on an icon types out the corresponding command in the work area with

placeholders for the required input variables from the user.

• The menu bar: The menu bar on top of the window (below the name bar

of the notebook) has the usual icons that you expect in all window interfaces.

However, this bar is context sensitive and changes with what kind of object

your cursor is placed on. When the cursor is on a graphical object that has

animation, the menu bar brings up controls for playing the animation.

• Command sensitive on-line help: If you place your cursor on a command

(i.e., name of a function) you have typed and left click the mouse, you get

a menu from where you can access on-line help on that command, displayed

in a separate MuPAD help window. You can always access the help window

from the Help menu of MuPAD.

Three basic things about syntax

1. Variable assignment is done with ‘:=’ and NOT with ‘=’ as in MATLAB.

Thus, you must type f := x^2 +1 or x := 5 in MuPAD notebook.

2. Output suppression is done with ‘:’ at the end of the command and NOT

‘;’ as in MATLAB. Thus, to suppress the output, type f := (x^2 +1): .

3. Recalling the previous answer is done with ’%’ and NOT ans as in MAT-

LAB. Thus typing, subs(%, x=a) will substitute a for x in the previous an-

swer.

9.5.1 Graphics and animation

MuPAD has extensive graphics capability. The number of graphics functions and

the ease with which one can use various options for rendering graphs is outstanding.

Strangely enough, most of these functions are not available through the Symbolic

Math Toolbox. You must access these functions through the MuPAD Notebook.

MuPAD provides a whole suite of graphics primitives, such as point, line, arc,

box, circle, ellipse (both in 2-D and 3-D), and surface, cone, cylinder, sphere, etc.
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Command Bar
Click on a math icon
to get the corresponding
function typed on the
input line. 

Context sensitive
Menu Bar

User input  

Text (comment) area

MuPAD output

MuPAD Notebook

Figure 9.1: A typical session in a MuPAD Notebook. MuPAD notebooks are invoked
by typing mupad on the MATLAB command line. Once the Notebook opens, you
are in the native MuPAD environment.
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>> syms x a pi

>> f = (x-1)*(x-a)*(x+pi)*(x+2)*(x+3)

f =

-(pi + x)*(a - x)*(x - 1)*(x + 2)*(x + 3)

>> g = expand(f)

g =

6*pi*a - 6*pi*x + 6*a*x + pi*x^2 + 4*pi*x^3 + ... 

>> soln = solve(g,x)

soln =

  -3

  -2

   1

   a

 -pi

>> soln(1)

ans =

-3 

>> simplify(subs(g,x, soln(1)))

ans =

0

>> limit(g/x,x,pi)

ans =

(pi - 1)*(pi + 2)*(pi + 3)*(2*pi - 2*a)

>> simplify(subs(ans,a,pi/2)) 

ans = 

pi*(pi - 1)*(pi + 2)*(pi + 3)

>> ezsurf(f)

Define a function f . 

Expand f and call it g. 

Solve g = 0 for x. 

Substitute one of the
solutions in g and see
if it satisfies g = 0.  

Find

Evaluate ans at 

Make a surface plot of f.

.

.

Figure 9.2: This simple set of calculations is carried out using the Symbolic Math
Toolbox. Compare these commands with those shown in Fig. 9.1 carried out using
the MuPAD Notebook.
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With these primitives and their host of attributes, you can build very sophisticated

graphics fairly quickly. The on-line help documentation (accessible through the

MuPAD Notebook menu) is very good as it provides examples on each primitive.

Here, we mention the two basic workhorses of MuPAD graphics, plotfunc2d

and plotfunc3d. Note that these functions are to be used in MuPAD Notebook.

The only graphics functions available through the Symbolic Math Toolbox are

those belonging to the EZ family—ezplot, ezsurf, ezcontour, etc. The func-

tion plotfunc2d can be used to plot any scalar function or functions, just like

ezplot, but with a lot more control on the plot attributes (e.g., color, axes, ticks).

First, we use the simplest form:

plotfunc2d(sin(x^2), x = 0..4*PI)

to plot sinx2 over x ∈ [0, 4π]. The first argument is the function to be plotted (here,

sinx2) and the second argument is the range of x to be used for plotting. Note that

π is PI in MuPAD and not pi as in MATLAB. The output is shown in Fig. 9.3(a).

The 3-D counterpart, plotfunc3d, is equally easy to use:

plotfunc3d(sin(x^2)+sin(y^2), x = -PI/2..PI/2, y = -PI/2..PI/2).

The output is shown in Fig. 9.3(b). So, what is the difference between these func-

tions and ezplot functions? These functions can take a lot of optional arguments,

literally tens of them for each object in the plot, e.g., for axes, line, text, labels.

MuPAD on-line help provides enough examples to show you how to use these op-

tional arguments. To activate the on-line help, click the left button of the mouse

when the cursor is on the function plotfunc2d in the notebook, and choose Help
about 'plotfunc2d'.
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Figure 9.3: Plots produced by basic plotting commands (a) plotfunc2d and (b)
plotfunc3d.

The most interesting thing about these functions is how easily they let you

animate a graph. All you need is an extra parameter in the mathematical function

you are plotting. Provide a range for the parameter and watch the graph change

dynamically as the parameter changes! Animating a graph, 2-D or 3-D, is as simple

as that.

Let us see a simple example first. Let us plot sin(ax2) as ‘a’ changes from small

values to 1:
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plotfunc2d(sin(a*x^2), x = 0..4*PI, a = 0.1..1)

Note the third argument—the range for the parameter a. That’s it. No fanfare,

no elaborate functional calls. MuPAD is smart enough to interpret that the range

given for a is the animation parameter. Figure 9.4 shows three frames selected from

the animation thus produced. These frames were taken by pausing the animation

at a frame and exporting that frame as a graphics file (just left-click and select your

options for exporting the graphics).
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Figure 9.4: Three frames taken from the animation sequence produced by
plotfunc2d command.

Needless to say that plotfunc3d will do the same thing with 3-D plots, given

an extra parameter and its range. Whatever you see here, however, is just the tip

of an iceberg. MuPAD gives you a lot more facility for animating graphs. The more

you want, the deeper you have got to dig.

Both plotfunc2d and plotfunc3d are actually high-level plotting functions in

MuPAD. Sophisticated animation requires working with graphics primitives. Mu-

PAD provides an amazing suite of graphics primitives. The function plotfunc2d is

itself made of the primitive 2-D plotting function plot::Function2d. You can use

this primitive function to create many graphics objects without displaying them

on the screen. Then you can use the plot function to display all these objects,

either separately or together. As an example, let us say that we have two functions

Fmech = k ∗ x and Felec = V 2

10(1−x)2 , and we are interested in seeing the intersection

of these two curves as V varies over a range of values. Just for the kicks, we will

hatch the area between these two curves and see it change with the animation of

the graphs. Here are the commands:

Fm := plot::Function2d(15*x, x=0..1, Color=RGB::Black):

Fe := plot::Function2d(0.1*V^2/(1-x)^2, x=0..1, V=2..5):

Diff := plot::Hatch(Fm, Fe):

plot(Fm, Fe, Diff, ViewingBoxYRange=0..15, Frames=20, TimeRange=0..3)

The last command is what produces the animation (by displaying the three

graphics objects created by the first three lines). The optional arguments control

the y-axis, the number of frames in the animation, and the time range over which

the animation is played. Try it out. Three static frames taken from this animation

are shown in Fig. 9.5.
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Figure 9.5: Three frames taken from the animation sequence produced by us-
ing three graphic objects produced with the primitives plot::Function2d and
plot::Hatch, and displayed using plot.

9.6 Summary: Some Symbolic Math Toolbox Com-
mands

Here is a list of the commands we have discussed. The things inside the parentheses

are there as examples. You could change them.

syms x t y a b Declare x, t, y, a, and b as symbolic. Do this first.

sym([1 2 3]) Treat the list [1 2 3] as symbolic.

diff(sin(t),t) Calculate d
dt sin t to be cos t.

int(x^2, x) Calculate
∫
x2 dx to be x3/3.

limit(f, x, a) Find limx→a f(x).

expand((a+b)^3) Expand (a+ b)3 to a3 + 3a2b+ 3ab2 + b3.

collect(x^2 + 2*x^2) Collect x2 + 2x2 into 3x2.

solve(x^3-y, x) Find the three cube roots of y.

subs(x*y^2, y, a) Substitute y = a into xy2 to get xa2.

pretty(x^2) Print out x2 on two or more easy-to-read lines.

simplify(sin(t)^2+cos(t)^2) Use trig to simplify sin2 t+ cos2 t to 1.

eval(’sin(7)’) Treat ’sin(7)’ as a MATLAB command.

double(sym(rand(3))) Get numbers from a symbolic array.

vpa(f, n) Evaluate f using ‘n’ digit variable precision arithmetic.

vectorize(’x^2’) Put dots in an expression (turn x^2 into x.^2).

char(sym(t^2)) Turn a symbolic expression into a char string.

f=inline(’x^2-x’) Make f so that, say, f(7) calculates 72 − 7.

f=matlabFunction(exp) Make anonymous function f for exp.

ezplot(exp(t)) The simplest way to plot et.

funtool Bring up a symbolic graphing calculator.





10. Errors

Errors are an integral part of life whether you interact with computers or not. The

only difference is, when you interact with computers, your errors are pointed out

immediately—often bluntly and without much advice. Interaction with MATLAB

is no exception. Yes, to err is human, but to forgive is definitely not MATLABine.

So, the earlier you get used to the blunt manners of your friend and his terse

comments, the better for you. As this friend does not offer much advice most of the

time, we give you some hints here based on our own experience in dealing with your

friend. Before we begin, we warn you that this friend has a tendency to become

very irritating if you work under too much time pressure or don’t have enough sleep.

In particular, if you are not relaxed enough to distinguish between ( and [, ; and

:, or a and A, you and your friend are going to have long sessions staring at each

other.

Here are the most common error messages that you are likely to get while work-

ing in MATLAB. All messages below are shown following a typical command. Fol-

lowing the actual message are explanations and tips.

1. >> D = zeros(3); d = [1 2];

>> D(2:3,:) = sin(d)

???  Subscripted assignment dimension mismatch. 

This is a typical problem in matrix assignments where the dimensions of the

matrices on the two sides of the equal sign do not match. Use the size

command to check the dimensions on both sides and make sure they agree. For

example, for the preceding command to execute properly, size(D(2:3,:))

and size(sin(d)) or size(d) must give the same dimensions.
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2. >> (x,y) = circlefn(5);

??? (x,y)=circlefn(5);
      |
Error: Expression or statement is incorrect--possibly 
       unbalanced (, {, or [.

Here MATLAB is confused with the list of variables because a list within

parentheses represents matrix indices. When the variables represent output

of a function or a list of vectors, they must be enclosed within square brackets.

The correct command here is [x,y]=circlefn(5) (circlefn is a user-written

function). When parentheses and brackets are mixed up, the same error mes-

sage is displayed:

>> (x,y] = circlefn(5);

??? (x,y]=circlefn(5);
      |
Error: Expression or statement is incorrect--possibly ...

3. >> x = 1:10;

>> v = [0 3 6];

>> x(v)

??? Subscript indices must either be real positive integers

or logicals.

The first element of the index vector v is zero. Thus, we are trying to get the

zeroth element of x. But zero is not a valid index for any matrix or vector

in MATLAB except when it is a logical zero (i.e., zeros produced by logical

operations). The same problem arises when a negative number appears as an

index. Also, of course, an error occurs when the specified index exceeds the

corresponding dimension of the variable:

>> x(12)

??? Attempted to access x(12); index out of bounds because numel(x)=10.

The examples given here for index-dimension mismatch are almost trivial.

Most of the times, these problems arise when matrix indices are created, in-

cremented, and manipulated inside loops.

4. >> x=1:10; y=10:-2:-8;

>> x*y

??? Error using ==> mtimes

Inner matrix dimensions must agree.
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In matrix multiplication x*y, the number of rows of x must equal the number

of columns of y. Here x and y are both row vectors of size 1×10 and therefore

cannot multiply. However, x*y’ and x’*y will both execute without error,

producing inner and outer products, respectively.

Several other operations involving matrices of improper dimensions produce

similar errors. A general rule is to write the expression on paper and think if

the operation makes mathematical sense. If not, then MATLAB is likely to

give you error. For example, A2 makes sense for a matrix A only if the matrix

is square, and Ax for a vector x and matrix A does not make any sense. The

exceptions to this rule are the two division operators—/ and \. Although y/x,

for the two vectors defined earlier, may not make any sense mathematically,

MATLAB gives an answer:

>> y/x

ans =
   -0.2857

This is because this division is not a mere division in MATLAB, but it also

gives solutions to matrix equations. For rectangular matrices, it gives solutions

in the least squares sense. See on-line help on slash for more details.

A common source of error is to use the matrix operators where you want

array operators. For example, for the vectors x and y, y.^x gives element-by-

element exponentiation, but y^x produces an error:

>> y^x

??? Error using ==> mpower

At least one operand must be scalar.

5.
>> [x,y] = circlefn;

??? Input argument "r" is undefined.

Error in ==> CIRCLEFN at 9
x = r*cos(theta);                % generate x-coordinates

A function file has been executed without giving proper input. This is one of

the very few error messages that provides enough information (the function

name, the name of the directory where the function file is located, and the

line number where the error occurred).

6. >> [t,x] = Circle(5);

??? Attempt to execute SCRIPT circle as a function.
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Here Circle is a script file. Input–output lists cannot be specified with script

files. But here is a slightly more interesting case that produces the same error.

The error occurs in trying to execute the following function file:

Function [x,y] = circlefn(r);

% CIRCLEFN - Function to draw a circle of radius r.

theta = linspace(0,2*pi,100); % create vector theta

x = r*cos(theta);

y = r*cos(theta); % generate coordinates

plot(x,y); % plot the circle

Here is the error:

>> [x,y]=circlefn(5)

??? Attempt to execute SCRIPT circlefn as a function.

You scream, “Hey, it’s not a script!” True, but it is not a function either. For

it to qualify as a function, the f in function, in the definition line, must also

be in lowercase, which is not the case here. So MATLAB gets confused. Yes,

the error message could have been better, but you are probably going to say

this in quite a few cases.

>> CIRCLEFN[5];

??? circlefn[5]
            |
Error: Unbalanced or unexpected parenthesis or bracket.

Here parentheses are required in the place of the square brackets. The error

locator bar is at the right place and should help. This error message is good

and helpful. We have indeed misused brackets!

>> EIG(D)

??? Undefined function or method 'EIG' for input arguments of type ...

Here EIG is a built-in function and its name must be typed in lowercase: eig.

MATLAB does not recognize EIG, hence the error. But the error message pro-

vides no clue about the existence of eig. In previous versions of MATLAB,

this error was better diagnosed and told the user that it was a capitalized

internal function.
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7. >> x = b+2.33

??? Undefined function or variable b.

The variable b has not been defined. This message is right on target. But

when the same message comes for a function or script that you have written,

you may scratch your head. In such cases, the function or the script that you

are trying to execute is most probably in a different directory than the current

directory. Use what, dir, or ls to show the list of files in the current directory.

If the file is not listed there then MATLAB cannot access it. You may have to

locate the directory of the file with the command which filename and then

change the working directory with the cd command to the desired directory.

8. >> global a, b

??? Undefined function or variable b.

You think that you are merely declaring a and b to be global variables. But

what is that comma doing there (after a)? MATLAB treats the comma to

be a command or statement separator. Thus, it did accept the declaration

global a as a valid command; now it is looking for a value of b (because

typing a variable by itself directs MATLAB to return its value). So, do not

use commas to separate variables in global, save, or load commands. A

really tricky situation arises when you make a similar mistake in a for loop

statement: for i=1, n. This statement will execute without any error mes-

sage, but the loop will be executed for only i = 1 and MATLAB will happily

display the value of n on the screen.

9. >> d = 0:10;
>> d1 = linspace(0,2*pi,10);
>> plot(d,d1)

??? Error using ==> plot 
Vectors must be the same lengths.

The input vectors in plot command must be pairwise compatible. For a de-

tailed discussion of this, see the description of the plot command in Chapter 5.



11. Honorable
Mentions

There are mainly three other significant facilities in MATLAB, which we mention

here, but leave it to the reader to explore as and when required.

11.1 Debugging Tools

MATLAB supports a built-in debugger, which consists of several commands such as

dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,

dbup, etc. You can use these commands to help you debug your MATLAB programs.

You can write these commands in your M-file that you want to debug, or you can

invoke them interactively by clicking on them in the editor/debugger window. See

the on-line help under debug for details of these commands.

11.2 External Interface: Mex-files

If you wish to dynamically link your Fortran, C/C++, or Java programs to MAT-

LAB functions so that they can communicate and exchange data, you need to learn

about Mex-files. Consult the on-line documentation under Advanced Software De-

velopment to learn about these files. The process of developing Mex-files is slightly

complicated and somewhat system-dependent. You should perhaps first consider

nondynamic linking with your external programs through standard ASCII data files.

11.3 Graphical User Interface

It is also possible to design your own graphical user interface (GUI) with menus,

buttons, and slider controls in MATLAB. This facility is very useful if you are

developing an application package to be used by others. You can build many visual

“user-friendly” features in your application. For more information, consult the on-

line documentation under GUI Building.
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A.1 Punctuation Marks and Other Symbols For on-line help

type:

help punct, Comma: A comma is used to

• separate variables in the input and output list of a function

Example: [t,x]=ode23(’pend’,t0,tf,x0)

• separate the row and column indices in a matrix

Example: A(m,n), A(1:10,3), etc.

• separate different commands on the same line

Example: plot(x,y), grid, xlabel(’x’), etc.

; Semicolon: A semicolon is used to

• suppress the MATLAB output of a command

Example: x=1:10; y=A*x; etc.

• separate rows in the input list of a matrix

Example: A=[1 2; 4 9]

: Colon: A colon is used to specify range

• in creating vectors

Example: x=1:10; y=1:2:100; etc.

• for matrix and vector indices

Example: see Section 3.1.3

• in for loops

Example: for i=1:20, x=x+i; end

’ Right Quote: A single right quote is used to transpose a vector or a matrix.

Example: symA=(A’+A)/2
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’ ’ Single Quotes: A pair of single right quote characters is used

to enclose a character string.

Example: xlabel(’time’), title(’My plot’), etc.

. Period: Other than in numbers (for decimal point), a period is used

in array operations.

Example: Asq = A.^2 (see page 73)

.. Two Periods: Two periods are used in cd .. command to access

parent directory.

... Ellipsis: Ellipsis (three periods) at the end of a command denote

continuation to the next line.

Example: x=[log(1:100) sin(v+a.*b) 22.3 23.0 ...

34.0 33.0 40:50 80];

! Exclamation: An exclamation preceding a command is used to send

the local operating system command command to the system.

This command is not applicable to Macs.

Example: !emacs newfile.m invokes the local emacs editor.

@ At: @ character denotes a function handle used to

• pass functions in the input list of other functions

Example: fzero(@myfunction,3)

• create anonymous functions

Example: f=@(t) t*sin(omega*t)

% Percent: A percent character is used to

• mark the beginning of a comment, except when used

in character strings

Example: % This is a comment, but rate = ’8.5%’ is a string

• denote formats in standard I/O functions sprintf and fprintf

Example: sprintf(’R = %6.4f’, r)

%% Double Percent: Two consecutive % characters are used to mark the

beginning of a cell in cell scripts (for debugging and publishing).

Example: %% This is the header of a cell script

( ) Parentheses: Apart from its obvious use in arithmetic operations

(such as a=5/(2+x*(3-i)); etc.), parentheses are used to

• enclose matrix and vector indices

Example: A(1:5,2)=5; v=x(1:n-5); etc.

• enclose the list of input variables of a function

Example: [t,x]=ode23(’pend’, t0, tf, x0)

{ } Curly braces: These braces are used to

• enclose cell indices (see page 128), e.g., C{2,1} = 5

• enclose arguments in LATEXcommands, e.g., ylabel(’x_{n+1}^{-2}’).

[ ] Square brackets: Square brackets are used to

• form and concatenate vectors and matrices

Example: v=[1 2 3:9]; X=[v; log(v)]; etc.

• enclose the list of output variables of a function

Example: [V,D]=eig(A); etc.
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A.2 General-Purpose Commands

See Section 1.6.6
For on-line help

type:

help general

Help and Query

lookfor Keyword search for help whatsnew Display ReadMe files
help On-line help info Info about MATLAB
docsearch On-line documentation search ver MATLAB version info
doc On-line HTML documentation syntax Help on command syntax
demo Run demo program why Give philosophical advice

Command Window Control

clc Clear command window home Send cursor home
format Set screen output format echo Echo commands in script file
more Control paged screen output ↑, ↓ Recall previous commands

Working with Files and Directories

pwd Show current directory delete Delete file
cd Change current directory diary Save text of MATLAB session
dir, ls List directory contents type Show contents of file
mkdir Create a new directory ! Access operating system
rmdir Remove directory path List accessible directories

Variable and Workspace

clear Clear variables and functions length Length of a vector
who,whos List current variables size Size of a matrix
load Load variables from file pack Consolidate memory space
save Save variables in Mat-file disp Display text or matrix

Start and Exit

matlabrc Master start-up file quit Quit MATLAB
startup M-file executed at start-up exit Same as quit

Time and Date

clock Wall clock time etime Elapsed time function
cputime Elapsed CPU time tic Start stopwatch timer
date Date, month, year toc Read stopwatch timer



288 The MATLAB Language Reference

A.3 Special Variables and Constants

Constants Variables

pi π (=3.14159. . .) ans Default output variable
inf ∞ (infinity) computer Computer type
NaN Not-a-Number nargin Number of input arguments
i, j Imaginary unit (

√
−1) nargout Number of output arguments

eps Machine precision
realmax Largest real number
realmin Smallest real number

A.4 Language Constructs and DebuggingFor on-line help

type:

help lang See Section 4.3.

Declarations/Definitions

script function global

nargchk persistent mlock

Interactive Input Functions

input keyboard uimenu

ginput pause uicontrol

Control Flow Functions

for while end

if elseif else

switch case otherwise

error break return

Debugging

dbclear dbcont dbstep dbstack dbstatus

dbup dbdown dbtype dbstop dbquit

A.5 File Input/OutputFor on-line help

type:

help iofun See Section 4.3.7.

File Opening, Closing, and Positioning

open fopen fclose fseek ftell frewind ferror

File Reading and Writing

fread fwrite fprintf fscanf fgetl fgets textread

xmlread xmlwrite wklread wklwrite saveas print publish
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A.6 Operators and Logical Functions

See Section 3.2.
For on-line help

type:

help ops
Arithmetic Operators

Matrix Operators Array Operators

+ Addition + Addition
- Subtraction - Subtraction
* Multiplication .* Array multiplication
^ Exponentiation .^ Array exponentiation
/ Left division ./ Array left division
\ Right division .\ Array right division

Relational Operators Logical Operators

< Less than & Logical AND
<= Less than or equal | Logical OR
> Greater than ~ Logical NOT
>= Greater than or equal xor Logical EXCLUSIVE OR
== Equal
~= Not equal

Logical Functions

all any exist find

finite isempty isinf isnan

ismember issparse isstr isfinite
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A.7 Frequently Used Math Functions

See Section 3.2.4 for description and examples.
For on-line help

type:

help elfun
Trigonometric Functions

sin, sind asin, asind sinh asinh

cos, cosd acos, acosd cosh acosh

tan, tand atan, atand tanh atanh

atan2

cot, cotd acot, acotd coth acoth

sec, secd asec, asecd sech asech

csc, cscd acsc, acscd csch acsch

Exponential Functions

exp log log10 sqrt

expm1 log1p log2 nthroot

pow2 nextpow2 realpow reallog

Complex Functions

abs angle conj complex

real imag unwrap cplxpair

Round-off Functions

fix floor ceil round

rem sign mod

Specialized Math Functions

bessel bessely besselh beta

betain betaln ellipj ellipke

erf erfinv gamma gammainc

legendre rat dot cross

For on-line help

type:

help specfun
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A.8 Matrices: Creation and Manipulation

See Section 3.1.
For on-line help

type:

help elmat
Elementary Matrices

eye ones zeros rand

randn linspace logspace meshgrid

Specialized Matrices

compan hadamard hankel hilb

invhilb magic pascal rosser

toeplitz vander wilkinson gallery

Matrix Manipulation Functions

diag fliplr flipud reshape

rot90 tril triu :

Matrix (Math) Functions

expm logm sqrtm funm

Matrix Analysis

cond det norm null

orth rank rref trace

eig balance poly hess

Matrix Factorization and Inversion

chol cholinc lu luinc

eig eigs svd svds

qr qz schur pinv

For on-line help

type:

help matfun

Sparse Matrix Functions: There are also several functions for creating, manip-

ulating, and visualizing sparse matrices. Some of these are spdiag, speye, sprandn,

full, sparse, spconvert, spalloc, spfun, condest, normest, sprank, gplot, and

spy. See on-line help for complete listing.
For on-line help

type:

help sparfun
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A.9 Character String Functions

See Section 3.3.
For on-line help

type:

help strfun
General String Functions

abs char eval setstr strcat strvcat

string strcmp lower upper isstr ischar

String ⇐⇒ Number Conversion

int2str num2str sprintf dec2hex mat2str

str2num sscanf hex2dec hex2num dec2bin

A.10 Graphics Functions

See Chapter 5.

For on-line help

type:

help graphics

help graph2d

help graph3d EZ Graphics

ezplot ezpolar ezcontour ezcontourf ezgraph3

ezplot3 ezmesh ezmeshc ezsurf ezsurfc

2-D Graphics

plot loglog semilogx semilogy fplot

bar errorbar compass feather stairs

polar fill hist rose quiver

3-D Graphics

plot3 fill3 mesh meshc meshz

surf surfc surfl cylinder sphere

Contour Plots

contour contour3 contourc clabel pcolor

Volumetric Plots

slice isosurface isocaps isocolors cotourslice

coneplot streamline streamtube streamlice streamparticles

Graphics Annotation

xlabel ylabel zlabel title legend

text gtext grid plotedit rectangle



A.10 Graphics Functions 293

Axis Control and Graph Appearance

axis colormap hidden shading view

Window Creation and Control

clf close figure gcf subplot

Axis Creation and Control

axes axis caxis cla gca

Handle Graphics Objects and Operations

axes line patch surface text

figure image uicontrol uimenu

delete drawnow get reset set

Animation and Movies

comet getframe movie moviein avifile

movie2avi frame2im im2frame rotate rotate3D

Hard Copy and Miscellaneous

print orient printopt ginput hold

For on-line help

type:

help color

Color Control and Lighting

caxis colormap flag hsv2rgb rgb2hsv

bone copper gray hsv pink

cool hot shading brighten diffuse

surfl specular rgbplot
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A.11 Some Applications Functions

A.11.1 Data analysis and Fourier transformsFor on-line help

type:

help datafun Basic Statistics Commands

mean median std min max

prod cumprod sum cumsum sort

Correlation and Finite Difference

corrcoef cov del2 diff gradient

Fourier Transforms

fft fft2 fftshift ifft ifft2

abs angle cplxpair nextpow2 unwrap

Filtering and Convolution

conv conv2 dconv filter filter2

A.11.2 Polynomials and data interpolationFor on-line help

type:

help polyfun Polynomials

poly polyder polyfit polyval polyvalm

conv deconv residue roots

Data Interpolation

interp1 interp2 interpft interpn griddata

Fourier Transforms

fft fft2 fftshift ifft ifft2

abs angle cplxpair nextpow2 unwrap

Filtering and Convolution

conv conv2 dconv filter filter2

A.11.3 Nonlinear numerical methodsFor on-line help

type:

help funfun Functions

fmin fmins fminbnd fminsearch fzero trapz

quad integral integral2 bvp4c pdepe dde23

ode23 ode45 ode113 ode23t ode23s odefile
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!, 7, 286
\, 73
’(right quote), 285
’ ’(single quotes), 286
( ), 286
,, 285
.., 286
..., 286
/, 73
:, 285
;, 285
�, 5, 63
@, 43, 83
[ ], 286
%, 64, 105, 286
%%, 54, 135, 286
{}, 286
1-D integration, 232
2-D plots, 25

abs, 76, 79
Adams–Bashforth–Moulton methods, 246
Algebraic Equations, 199–209
alpha value, 182
angle, 76
animated line, 188
animatedline, 188
animating graphs, 272
animation, 187
anonymous function, 108, 138, 207
anonymous functions, 83, 286

defining, 43
evaluating, 44
handle of, 43
tutorial on, 43
using, 44
with parameters, 84
workspace of, 83

ans, 18, 106

area, 152
arithmetic mean, 228
arithmetic operations, 19

on element-by-element basis, 73
on matrices, 73

array operation, 21, 41, 73
array operator, 22
arrays, 39

creating, 21
tutorial on, 39

ASCII files
loading, 90
reading and writing, 90

augmented matrix, 200
axes, 171, 172, 179

multiple, 178
placing, 178
sizing, 178

axes, 178
axis, 25, 26, 143

bar, 151
bar3, 155
bar3h, 155
barh, 152
Basic Fitting, 213
beats, 260
bench, 12
Bernoulli differential equation, 260
binary data, 48
boundary value problems, 231, 252
branching, 116

with if-elseif-else, 116
with switch-case, 117

break, 117
bvp4c, 253
bvp5c, 253
BVPs, 252

multi-point, 253
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two-point, 253

case sensitivity, 9
categorical, 131
categorical data, 131
Cayley–Hamilton Theorem, 210
cd, 12, 52
ceil, 77
cell, 49, 128

containers, 128
content indexing, 128
contents, 128

cell, 128
cell script, 135, 286
cell2mat, 49
celldisp, 130
cellplot, 130
cells, 123

creating, 128
manipulating, 130

char, 49, 79
character strings, 77

evaluate, 80
manipulating, 79
manipulation functions, 79
quote within, 79
spaces in, 77

characteristic equation, 210
characteristic polynomial, 210
characters, 77
Cholesky factorization, 205
circle, 23, 25, 30
clc, 12
clear, 12, 48
clearing

command window, 12
figure window, 12
workspace function, 12
workspace variables, 12

clf, 12
clock, 12
code analyzer, 110
coefficient of determination, R2, 226
coefficient of linear correlation, 225
colon, 285
color EPS, 185
colors, 184
column vector, 22

comet, 154, 187
comet3, 155
comma, 285
command history, 9
command length limit, 63
command prompt, 5
command window, 5, 63
commands

long, 63
maximum length of, 63
where to type, 63

comment lines, 29, 105
comments, 64, 113
compass, 153
compiled function, 112
complex, 76
complex functions, 76
complex numbers, 19
compounded interest, 35
computational geometry, 206
computer, 12
computer algebra, 263
conditional calculations, see control-flow
conj, 76
continuation, 65, 114, 286
contour, 154
contour3, 155, 159
control-flow, 116
copyfile, 12, 52
corrcoef, 224
correlation coefficient, 225
correlations, 224
cross, 35
cross product, 35
cubic splines, 222
cumprod, 228
cumsum, 228
cumulative product, 228
cumulative sum, 228
current directory, 51
curve fit

cubic, 215
double exponential, 221
least squares, 218
linear, 214, 217, 229
nonlinear, 221, 230
nonpolynomial, 218
norm of the residuals, 214
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polynomial, 213
power laws, 218
quadratic, 215
residuals, 214, 215

curve fitting, 213
cylinder, 155, 163

DAEs, 246, 259
data

exporting tutorial, 47
importing tutorial, 47
loading, 48
saving, 48

Data Analysis and Regression, 213–230
data objects, 123

cells, 123, 128
multidimensional matrices, 123
structures, 123, 124
tables, 131

Data Statistics, 227
data type, 1, 7
date, 12
dde23, 259
debugging commands, 288
delay differential equations, 259
demo, 7
demo, 7, 12
det, 87
determinant, 87
diag, 70, 71
diary, 92
diff, 59, 229, 266
differential algebraic equations, 246
Differential Equations, 231–261
dimension, 66
dir, 12, 52
directories, 51, 52
directory, 11
directory information commands, 12
directory navigation, 38
display format, 63
division

left, 73, 200
right, 73

doc, 85, 287
docsearch, 85
double integral, 237
double integration, 237

finding area, 238
nonrectangular domains, 238

drawnow, 188

edge
alpha value, 182
transparency, 182

editpath, 12
eig, 88, 89, 202
eigenvalues and eigenvectors, 87, 202

finding a few, 204
eggs, 204
eigshow, 206
elastic curve, 257, 259
elementary matrices, see utility matrices
ellipsoid, 155, 163
emacs editor, 7
Encapsulated PostScript, 185
EPS, 185
error, 118
error function, 233
errorbar, 151
errors, 279

dimension mismatch, 279
misformed expression, 280
misused parenthesis/brackets, 282
undefined command, 282

eval, 79, 80
event location, 248
event location in ODEs, 248
exist, 138
exit, 12
exp, 19, 76
expand, 59
expm, 77
exponential, 19
exponential functions, 76
exporting data, 38
eye, 42, 70, 71
ezcontour, 96, 149
ezcontourf, 96
ezmesh, 97, 155
ezmeshc, 97
ezplot, 95, 149, 264
ezplot3, 95, 155
ezpolar, 95, 149
ezsurf, 97, 155
ezsurfc, 97
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face
alpha value, 182
transparency, 182

factor, 59
factorial, 35
factorization, 59
fancy plots, 27
fclose, 121
feval, 80, 109
Fibonacci sequence, 121
Fig-files, 10
file I/O, 288
file types, 10

Fig-files, 10
M-files, 10
Mat-files, 10
Mex-files, 10
P-files, 10

files, 51
fill, 151
fill3, 155, 159
fitdemo, 221, 230
fix, 77
flipud, 72, 229
floating-point numbers, 63
floor, 77
fminsearch, 221, 230
fopen, 121
for loop, 113
format, 9, 17, 18, 64
fplot, 93, 150
fprintf, 121
function

definition line, 105
evaluating, 109
evaluating with function handle, 109
evaluating with feval, 109
executing, 105
in the input list, 108
input list, 105
inside another function, 108, 111
lowercase f in function, 104
nested, 112
output list, 105
performance, 113
profile, 113

function file, 10, 16, 103, 104
anatomy of, 104

comments in, 105
creating, 33
example of, 106
executing, 33
subfunctions in, 111

function handle, 43, 83, 108, 286
functions

anonymous, 43
funtool, 98, 265
fzero, 108, 207, 209

Gaussian elimination, 200
general commands, 12
general information commands, 12
general-purpose commands, 287
generalized eigenvalue problem, 203
geometric series, 23, 35
get, 174
global, 114
global variables, 114
goodness of fit, R2, 226
gradient, 154
graph theory, 206
graphics, 141–196

2-D plots, 141
catalog of, 150–154

3-D plots, 155
catalog of, 159–163
surface, 157
view angle, 164
wire-frame, 157

animation, 187
axis control, 143

semi, 144
deleting objects, 177
Handle Graphics, 171
hard copy, 185
labels, 142
legend, 143
line options, 142
mesh plots, 156
object hierarchy, 171

children, 171
parent, 171

object properties, 173
placement, 178
printing, 185
rotate view, 166
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saving
as Fig-file, 186
as M-code, 186
to reusable files, 186

specialized 2-D plots, 149
surface plots, 156
text in, 142
title, 142
view command, 164

graphics functions, 292
graphics layout, 147
graphics objects

getting properties of, 173
setting properties of, 173

graphs, 206
griddata, 168
gtext, 142, 146

H1 line, 31
handle, 171
Handle Graphics, 171, 188

object handles, 172
handle of an object, 171
hard copy, 185
help, 7, 12, 287
help facility, 89
help window, 90
helpdesk, 7, 12, 90, 287
helpwin, 7, 12
Hermite interpolant, 221
hgsave, 186
hgtransform, 194
hist, 153
hold, 145
home, 12
HTML, 54, 137

identity matrix, 70
if-elseif-else, 107, 113, 116
imag, 76
imaginary number i, 19
implicit ODEs, 259
import data, 91
importdata, 91
importing

audio data, 91
data files, 91
image data, 91

movie data, 91
spreadsheet data, 91

importing data, 38
index vector, 68
initial value problems, 231, 239
inner product, 41, 73, 281
input, 119
input/output, 121, 288
integral, 232
integral2, 237
integral3, 237
integrating factor, 231
integration

2-D or double, 237
3-D or triple, 237
trapezoidal rule, 229

interactive computation, 63–98
interactive input, 119

input, 119
keyboard, 119
menu, 120
pause, 120

interpolation, 213, 221
1-D (interp1), 222
2-D (interp2), 222
3-D (interp3), 222
FFT-based (interpft), 222
Hermite, 221
schemes, 223
spline, 221
spline, 222
surface, 168

inv, 201
invariants, 211
inverse of a matrix, 201
isempty, 107

keyboard, 119

labels, 142
language constructs, 288
LaTeX, 135
LaTeX commands, 136
least squares curve fit, 218
left division, 200
legend, 142
legend, 143, 148
length, 9



Index 301

length of a curve, 260
limit cycle, 261
line

changing data points, 175
changing line style, 175
changing line thickness, 175

line, 145, 175
linear algebra, 199

eigenvalues and eigenvectors, 202
solving a linear system, 199

linear system, 199
linsolve, 200
linspace, 72
load, 10, 48, 90
loading

multiple files, 99
loading data, 38, 47, 90
local operating system

accessing, 7
log, 19, 76
log scale plots, 27
log10, 19, 76
log2, 76
logarithm, 19, 76
logical, 68
logical functions, 75
logical operations, 74
loglog, 27, 150
logm, 77
logspace, 72
lookfor, 7, 12, 31, 85, 105, 114, 287

error in using, 90
loops, 116

for, 113, 116
while, 113, 116

ls, 12, 52
LU factorization, 205

M-book, 137
M-files, 7, 10, 101
makehgtform, 194
Maple, 3
margin help box, 4
Mat-file, 10, 47, 48, 90
math functions, 75
Mathematica, 3
MathWorks, Inc.

address, 4

MATLAB
data type, 7
launching, 11
main features of, 1
operating systems, 3
programming in, 101
prompt, 5, 63
toolboxes, 1
users, 3
what is it, 1
who makes, 4

MATLAB language, 113–137
MATLAB notebook, 137
MATLAB publisher, 38
MATLAB windows, 5

command, 5
editor, 7
figure, 7
graphics, 7

matrices, 39
tutorial on, 39

matrix, 65
accessing elements of, 66
appending a column to, 69
appending a row to, 69
column index, 66
decomposition, see factorizations
deleting a column, 40, 70
deleting a row, 40, 70
determinant, 87
dimensions, 66
elements, 40
exponential (expm), 77
exponentiation, 41
factorizations, 205
flip, 72
functions, 77
identity, 70
index specifier (:), 40
indexing, 66
indexing with logicals, 68
indices, 40
initialization, 69
input, 40, 65, 67

continuation in, 65
logarithm (logm), 77
lower triangular, 72
manipulation, 40, 66, 67
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multidimensional, 123
null, 65, 69
reshaping, 68
row index, 66
single column, 68
special, 72
symmetric, 99
transpose, 41, 69
upper triangular, 72, 99
utility, 70
zero, 69, 70

matrix equation, 200
matrix operations, 73
matrix square root, 77
max, 228
mean, 228
median, 228
menu, 120
mesh, 155, 156, 161
meshc, 155
meshgrid, 156
meshz, 155, 161
Mex-files, 10
min, 228
mkdir, 12, 52
mlock, 12
mod, 77
modal analysis, 204
mode shape, 204
modifying plots, 176

with object handles, 176
plotedit, 144
PropEdit, 177

more, 9, 12, 27, 64
movie, 187
movies, 187
MS Excel file, 49
MS Word, 54
multiple graphs, 147
munlock, 12
MuPAD

animation, 272
Notebook, 271, 273
plotfunc2d, 275
plotfunc3d, 275
Symbolic Math Toolbox, 263

mupad, 271

names of variables, 63
nargin, 106, 138
nargout, 106, 138
natural frequency, 204
nested functions, 112
network analysis, 206
nonlinear algebraic equations, 207–209
nonlinear regression, 218
notebook, 137
nth root, 76
nthroot, 76
null matrix, 69
num2str, 79
numerical integration, 231–238

object handles, 172
getting, 172

ODE suite, 246
event location in, 248
solver options, 247

ode23, 110, 239
ode45, 110, 239
odeic, 259
ODEs, 231, 239, 252
on-line help, 7

built-in functions, 85
categories, 85
creating, 113
help, 12
lookfor, 12, 85
menu bar, 90

on-line help commands, 12
ones, 42, 70, 71
open, 55
operations

arithmetic, 73
logical, 74
relational, 74

operators, 289
optimset, 209
ordinary differential equations, 231, 239,

252
outer product, 41, 73, 281
overdetermined systems, 210
overlay plots, 27, 144

with hold, 145
with line, 145
with plot, 145
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p-code, 10, 112
P-files, 10
paged output, 9
parsed function, 112
partial differential equations, 231, 259
patch, 182
path, 11, 12, 51
pause, 120
pcode, 10
pcolor, 154
pdepe, 259
PDEs, 231
pie, 152
pie3, 155, 162
plot, 25, 26, 92, 141, 145, 146
plot editor, 144
plot3, 155, 159
plotedit, 144
plotting simple graphs, 92
plotting vector fields, 167
plotting volumetric data, 168
plotyy, 152
polar, 151
poly, 211
polyfit, 216
polyval, 216
PostScript, 185
precision of computation, 63
pretty, 60, 269
print, 64
print, 25, 26, 185
printing, 11
prod, 35, 228
profile, 113
profiler, 113
projectile, 248
propedit, 144
properties of a line, 173
property editor, 144
pseudocode, 110
pseudoinverse, 210
publish, 137
publish, 55, 137
publish configuration

edit, 137
figure size control, 137

publisher, 135
publishing, 286

mathematical equations, 135
publishing reports, 54, 135
punctuation marks, 285
pwd, 12, 52

QR factorization, 205
quad, 232, 235
quadgk, 232
quadl, 232
quadrature, see numerical integration
quit, 12, 17, 18
quitting MATLAB, 12
quiver, 154, 167
quiver3, 155

rand, 70
reading a file, 121
reading a table, 122, 134
readtable, 122, 134
real, 60, 76
recall commands, 9
recording a session, 92
recursion, 121, 139
regression analysis, 213
relational operations, 74
relative tolerance, 245
rem, 77
report

figure size in, 137
reshape, 68
residual, 214
resonance, 260
return, 118
RGB values, 184
ribbon, 162
right division, 73
root

nth, 76
square, 76

roots, 209
roots of polynomials, 209
rotate view in 3-D, 166
rotate3d, 166
round, 77
round-off functions, 77
row and column indices, 66
row reduced echelon form, 200
row vector, 22
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ref, 201
Runge–Kutta method, 239, 246

save, 10, 48, 90
saving

multiple files, 99
saving data, 38, 47, 90
saving graphs, 185
scatter3, 155
Schur decomposition, 205
screen output, 9, 64

floating point format, 9
page control with more, 12

script file, 10, 16, 29, 49, 101
creating, 29
executing, 29
name of, 103
saving, 29

semicolon, 285
semilogx, 27, 150
semilogy, 27, 150
set, 174
sign, 77
simple graphics with

ezcontour, 96
ezcontourf, 96
ezplot, 95
ezplot3, 95
ezpolar, 95
ezsurf, 97
ezsurfc, 97
fplot, 93

simple graphs, 16
simplify, 60, 269
singular Jacobian, 259
singular value decomposition, 205
size, 9, 66
slash, 200
slice, 155, 163
solution of ODEs

of order one, 240
of order two, 241

solve, 60, 266, 268
sort, 228
space curve, 27
sparse matrices, 206, 291
special matrices, 72
special variables and constants, 288

sphere, 155, 163
spline, 221
spy, 99
sqrt, 76
sqrtm, 77
square root, 76
stairs, 153
standard deviation, 228
standard error of estimate, 225
statistics, 227
stem, 153
stem3, 155, 162
stiff equations, 239
stiff solvers, 246
strcmp, 79
strings, 77
structure

array, 124
fields, 124

structures, 123, 124
creating, 126
manipulating, 127

subfunctions, 111
subplot, 147
subs, 59, 60, 269
sum, 228
surf, 155, 156, 160
surface plot, 156

from interpolation, 168
surfc, 155, 160
surfl, 155, 160
SVD factorization, 205
switch-case-otherwise, 113
symbolic

differentiation, 59
factorization, 59
integration, 59
solution of algebraic equations, 60

symbolic algebra, 3
symbolic calculations, 59
symbolic computation, 58, 265
symbolic math, 38
Symbolic Math Toolbox, 3, 263
symbolic variables, 38
syms, 45, 59, 60
syntax, 287

tables, 131
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termination, 12
text, 142
text editor, 7
title, 25, 26, 34, 142
tolerance, 245

absolute, 245
relative, 245

toolboxes, 1
Tools menu, 227
transcendental equation, 208
transparency, 182
transpose, 69
trapz, 229
trees, 206
trigonometric functions, 19, 75

arguments in degrees, 76
arguments in radians, 76

tril, 72
trimesh, 155
triple integral, 237
triple integration, 238
trisurf, 155
triu, 72
tutorial lessons, 15
type, 31, 235
typographical styles, 4

help box, 4
italics, 4
sans serif, 4
shaded boxes, 4
typed face, 4

unitary matrix, 205
utility matrices, 70

examples, 71

variable names, 63
variable precision arithmetic, 266
variance, 228
vector, 65

arithmetic operations with, 21
column, 22
creating, 21, 72
input, 65
linearly spaced, 72
logarithmically spaced, 72
row, 22

vector field, 166

vectorization, 82
vectorize, 269
ver, 12
vi editor, 7
view(2), 164
view(3), 164
volumetric plots, 166
vpa, 266

waterfall, 155, 161
what, 12, 52
whatsnew, 287
while loop, 113
who, 12, 31
whos, 12, 31, 48
why, 287
workspace, 48
workspace information, 31
workspace information commands, 12
writetable, 122, 134
writing a file, 121
writing a table, 122, 134

xlabel, 25, 26, 142
xlsread, 49

ylabel, 25, 26, 142

zero matrix, 69
zeros, 42, 69–71
zeros of a polynomial, 209
zoom, 143


