Recitation, week of 3/29

Setup. A particle P has position $\vec{r}_{0/P}$ which we call, simply, \vec{r} . For all of this problem

 $\vec{r} = x\hat{i} + y\hat{j} \qquad \text{(position)}$ $\vec{v} = \dot{\vec{r}} = v_x\hat{i} + v_y\hat{j} \qquad \text{(velocity)}$ $= \dot{x}\hat{i} + \dot{y}\hat{j} \qquad \text{(velocity)}$ $\vec{a} = \dot{\vec{v}} = \ddot{\vec{r}} = a_x\hat{i} + a_y\hat{j} \qquad \text{(acceleration)}$ $= \dot{v}_x\hat{i} + \dot{v}_y\hat{j}$ $= \ddot{x}\hat{i} + \ddot{y}\hat{j}$

and

 $x = r \cos \theta,$ $y = r \sin \theta$ $\theta = \theta(t),$ and r = constant.

Assume $\theta(t)$ is given and is such that $\theta(t)$ starts at $\theta(0) = 0$ and grows to much bigger than 2π .

Questions.

For this set of problems do not use polar coordinate formulas you remember. (Well you *can* use them after you derive them using what is given above.) You must derive everything clearly.

- a) Draw the path of the particle.
- b) Pick a random point on the path and park a point representing the particle.
- c) Draw the vector \vec{r} .
- d) Define a vector $\hat{e}_r \equiv \vec{r}/|\vec{r}|$. Find \hat{e}_r in terms of \hat{i} , \hat{j} and θ . Draw \hat{e}_r , with the tail just beyond the tip of \vec{r} .
- e) The unit vector $\hat{k} = \hat{i} \times \hat{j}$. Define the unit vector $\hat{e}_{\theta} \equiv \hat{k} \times \hat{e}_r$. Find \hat{e}_{θ} in terms of \hat{i} , \hat{j} and θ . Draw \hat{e}_{θ} , with its tail at the tail of \hat{e}_r .
- **f**) Find \vec{v} in terms of \hat{i} , \hat{j} , r, θ and $\dot{\theta}$. [Hint: use the chain rule.]
- **g**) Find \vec{v} in terms of \hat{e}_{θ} , r and $\dot{\theta}$. Draw \vec{v} on the main drawing. Put it on top of \hat{e}_{θ} with its tail on top of \hat{e}_{θ} 's tail.
- **h**) Find $\dot{\hat{e}}_r$ in terms of \hat{e}_{θ} and $\dot{\theta}$. [Hint, differentiate the result from (d) and compare with (e).]
- i) Note that $\vec{r} = r \hat{e}_r$. Differentiate that expression to find another derivation of (g) above.
- **j**) Using any mixture of the methods above, find $\vec{a} \equiv \dot{\vec{v}}$ in terms of \hat{e}_r , \hat{e}_θ , θ , $\dot{\theta}$, $\ddot{\theta}$ and r. [Hint: You will have to use the chain rule and the product rule.]
- **k**) Define the speed $v = r\dot{\theta}$. Find \vec{a} in terms of \hat{e}_r , \hat{e}_{θ} , r, v and \dot{v} .