Recitation, week of $3 / 29$

Setup. A particle P has position $\overrightarrow{\boldsymbol{r}}_{0 / \mathrm{P}}$ which we call, simply, $\overrightarrow{\boldsymbol{r}}$. For all of this problem

$$
\begin{align*}
\overrightarrow{\boldsymbol{r}} & =x \hat{\imath}+y \hat{\boldsymbol{\jmath}} \tag{position}\\
\overrightarrow{\boldsymbol{v}}=\dot{\vec{r}} & =v_{x} \hat{\imath}+v_{y} \hat{\boldsymbol{\jmath}} \\
& =\dot{x} \hat{\imath}+\dot{y} \hat{\boldsymbol{\jmath}} \\
\overrightarrow{\boldsymbol{a}}=\dot{\vec{v}}=\ddot{\vec{r}} & =a_{x} \hat{\imath}+a_{y} \hat{\boldsymbol{\jmath}} \\
& =\dot{v}_{x} \hat{\imath}+\dot{v}_{y} \hat{\boldsymbol{\jmath}} \\
& =\ddot{x} \hat{\imath}+\ddot{y} \hat{\boldsymbol{\jmath}}
\end{align*}
$$

and

$$
\begin{array}{lll}
x=r \cos \theta, & y & =r \sin \theta \\
\theta & =\theta(t), & \text { and }
\end{array} \quad r=\text { constant. }
$$

Assume $\theta(t)$ is given and is such that $\theta(t)$ starts at $\theta(0)=0$ and grows to much bigger than 2π.

Questions.

For this set of problems do not use polar coordinate formulas you remember. (Well you can use them after you derive them using what is given above.) You must derive everything clearly.
a) Draw the path of the particle.
b) Pick a random point on the path and park a point representing the particle.
c) Draw the vector $\overrightarrow{\boldsymbol{r}}$.
d) Define a vector $\hat{\boldsymbol{e}}_{r} \equiv \overrightarrow{\boldsymbol{r}} /|\overrightarrow{\boldsymbol{r}}|$. Find $\hat{\boldsymbol{e}}_{r}$ in terms of $\hat{\boldsymbol{\imath}}, \hat{\boldsymbol{\jmath}}$ and θ. Draw $\hat{\boldsymbol{e}}_{r}$, with the tail just beyond the tip of $\overrightarrow{\boldsymbol{r}}$.
e) The unit vector $\hat{\boldsymbol{k}}=\hat{\boldsymbol{\imath}} \times \hat{\boldsymbol{\jmath}}$. Define the unit vector $\hat{\boldsymbol{e}}_{\theta} \equiv \hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}_{r}$. Find $\hat{\boldsymbol{e}}_{\theta}$ in terms of $\hat{\boldsymbol{\imath}}, \hat{\boldsymbol{\jmath}}$ and θ. Draw $\hat{\boldsymbol{e}}_{\theta}$, with its tail at the tail of $\hat{\boldsymbol{e}}_{r}$.
f) Find $\overrightarrow{\boldsymbol{v}}$ in terms of $\hat{\boldsymbol{\imath}}, \hat{\boldsymbol{\jmath}}, r, \theta$ and $\dot{\theta}$. [Hint: use the chain rule.]
g) Find $\overrightarrow{\boldsymbol{v}}$ in terms of $\hat{\boldsymbol{e}}_{\theta}, r$ and $\dot{\theta}$. Draw $\overrightarrow{\boldsymbol{v}}$ on the main drawing. Put it on top of $\hat{\boldsymbol{e}}_{\theta}$ with its tail on top of $\hat{\boldsymbol{e}}_{\theta}$'s tail.
h) Find $\dot{\hat{\boldsymbol{e}}}_{r}$ in terms of $\hat{\boldsymbol{e}}_{\theta}$ and $\dot{\theta}$. [Hint, differentiate the result from (d) and compare with (e).]
i) Note that $\overrightarrow{\boldsymbol{r}}=r \hat{\boldsymbol{e}}_{r}$. Differentiate that expression to find another derivation of (g) above.
j) Using any mixture of the methods above, find $\overrightarrow{\boldsymbol{a}} \equiv \dot{\overrightarrow{\boldsymbol{v}}}$ in terms of $\hat{\boldsymbol{e}}_{r}, \hat{\boldsymbol{e}}_{\theta}, \theta, \dot{\theta}, \ddot{\theta}$ and r. [Hint: You will have to use the chain rule and the product rule.]
k) Define the speed $v=r \dot{\theta}$. Find $\overrightarrow{\boldsymbol{a}}$ in terms of $\hat{\boldsymbol{e}}_{r}, \hat{\boldsymbol{e}}_{\theta}, r, v$ and \dot{v}.

